Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 44(12): 9285-9297, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34788217

RESUMO

This paper reviews the novel concept of a controllable variational autoencoder (ControlVAE), discusses its parameter tuning to meet application needs, derives its key analytic properties, and offers useful extensions and applications. ControlVAE is a new variational autoencoder (VAE) framework that combines automatic control theory with the basic VAE to stabilize the KL-divergence of VAE models to a specified value. It leverages a non-linear PI controller, a variant of the proportional-integral-derivative (PID) controller, to dynamically tune the weight of the KL-divergence term in the evidence lower bound (ELBO) using the output KL-divergence as feedback. This allows us to precisely control the KL-divergence to a desired value (set point) that is effective in avoiding posterior collapse and learning disentangled representations. While prior work developed alternative techniques for controlling the KL divergence, we show that our PI controller has better stability properties and thus better convergence, thereby producing better disentangled representations from finite training data. In order to improve the ELBO of ControlVAE over that of the regular VAE, we provide a simplified theoretical analysis to inform the choice of set point for the KL-divergence of ControlVAE. We evaluate the proposed method on three tasks: image generation, language modeling, and disentangled representation learning. The results show that ControlVAE can achieve much better reconstruction quality than the other methods for comparable disentanglement. On the language modeling task, our method can avoid posterior collapse (KL vanishing) and improve the diversity of generated text. Moreover, it can change the optimization trajectory, improving the ELBO and the reconstruction quality for image generation.

2.
Front Big Data ; 4: 729881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35005618

RESUMO

The paper extends earlier work on modeling hierarchically polarized groups on social media. An algorithm is described that 1) detects points of agreement and disagreement between groups, and 2) divides them hierarchically to represent nested patterns of agreement and disagreement given a structural guide. For example, two opposing parties might disagree on core issues. Moreover, within a party, despite agreement on fundamentals, disagreement might occur on further details. We call such scenarios hierarchically polarized groups. An (enhanced) unsupervised Non-negative Matrix Factorization (NMF) algorithm is described for computational modeling of hierarchically polarized groups. It is enhanced with a language model, and with a proof of orthogonality of factorized components. We evaluate it on both synthetic and real-world datasets, demonstrating ability to hierarchically decompose overlapping beliefs. In the case where polarization is flat, we compare it to prior art and show that it outperforms state of the art approaches for polarization detection and stance separation. An ablation study further illustrates the value of individual components, including new enhancements.

3.
Learn Health Syst ; 2(3): e10057, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31245585

RESUMO

A medical specialty indicates the skills needed by health care providers to conduct key procedures or make critical judgments. However, documentation about specialties may be lacking or inaccurately specified in a health care institution. Thus, we propose to leverage diagnosis histories to recognize medical specialties that exist in practice. Such specialties that are highly recognizable through diagnosis histories are de facto diagnosis specialties. We aim to recognize de facto diagnosis specialties that are listed in the Health Care Provider Taxonomy Code Set (HPTCS) and discover those that are unlisted. First, to recognize the former, we use similarity and supervised learning models. Next, to discover de facto diagnosis specialties unlisted in the HPTCS, we introduce a general discovery-evaluation framework. In this framework, we use a semi-supervised learning model and an unsupervised learning model, from which the discovered specialties are subsequently evaluated by the similarity and supervised learning models used in recognition. To illustrate the potential for these approaches, we collect 2 data sets of 1 year of diagnosis histories from a large academic medical center: One is a subset of the other except for additional information useful for network analysis. The results indicate that 12 core de facto diagnosis specialties listed in the HPTCS are highly recognizable. Additionally, the semi-supervised learning model discovers a specialty for breast cancer on the smaller data set based on network analysis, while the unsupervised learning model confirms this discovery and suggests an additional specialty for Obesity on the larger data set. The potential correctness of these 2 specialties is reinforced by the evaluation results that they are highly recognizable by similarity and supervised learning models in comparison with 12 core de facto diagnosis specialties listed in the HPTCS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA