Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(7): e0288324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37506066

RESUMO

An energy calculation parameter named the energy dissipation degree (RUd) is introduced based on the analysis of the energy dissipation mechanism and energy evolution characteristics during conventional triaxial tests of the granite of Shuangjiangkou. The deviatoric stress‒strain curve of rock can be divided into five stages using four stress thresholds (crack closure stress σcc, crack initiation stress σci, damage stress σcd and peak stress σp), which also correspond to the four RUd thresholds (RUdc, RUdi, RUdd and RUdp) on the energy dissipation degree-strain curve. A given stress threshold increases with increasing confining pressure; however, a given RUd threshold is basically stable under different confining pressures. Then, a new criterion for dividing the excavation damaged zones (EDZs) in the rock surrounding underground caverns based on the monotonically increasing characteristics of the energy dissipation degree‒axial strain relationship curve is proposed, and it allows for the classification of the surrounding rock into five types of zones through quantitative analysis of the RUd thresholds. Based on the criterion for dividing the EDZs of the surrounding rock mass of the underground cavern, the EDZs of the surrounding rocks of the underground cavern group of the Shuangjiangkou Hydropower Station are analyzed. The distribution characteristics of the EDZs of the rock surrounding underground caverns obtained by numerical simulation calculations based on RUd are basically the same as those obtained by in situ elastic wave tests. However, the RUd-based method for classifying the EDZs of the surrounding rock has the obvious advantage of being able to probe the boundaries of the undamaged zone (UDZ) of the surrounding rock more explicitly, while the method based on wave velocity testing is not sufficiently explicit. The damage zoning of the surrounding rock based on RUd can provide support design advice for the excavation of the surrounding rock, such as the support method, the length of the free section and anchor section of the prestressing anchor, etc.


Assuntos
Cavernas , Planejamento de Cidades , Cognição , Simulação por Computador , Pressão
2.
PLoS One ; 17(10): e0276100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301876

RESUMO

The surrounding rock at the exit of the No. 1 drainage tunnel of the Artashi Water Conservancy Project is micritic bioclastic limestone with 55% bioclastic material. This rock underwent unpredictable large and time-dependent deformation during excavation. To date, the mechanical behaviour of this kind of rock has rarely been studied. In this study, traditional triaxial compression tests and multilevel creep tests were conducted on micritic bioclastic limestone, and the results clarified the instantaneous and time-dependent mechanical properties of the rock. Considering that the essence of rock failure is crack growth, the crack strain evolution properties were revealed in rock triaxial compression tests and multilevel creep tests. Based on triaxial compression tests, the evolution of axial cracks with increasing deviatoric stress ratio Rd (ratio of deviatoric stress to peak deviatoric stress) was observed, and an axial crack closure element and new crack growth element were proposed. To simulate the creep behaviour of a rock specimen, the relationship of the rock creep crack strain rate with Rd was studied. A creep crack element was created, and the creep crack strain evolution equation was obtained, which closely fit the experimental data. Combining the 4 element types (elastic element, crack closure element, crack growth element, and creep crack element), a unified transient creep constitutive model (Mo's model) was proposed, which represented both the transient and time-dependent mechanical properties of the micritic bioclastic limestone.


Assuntos
Carbonato de Cálcio
3.
Sci Rep ; 12(1): 5460, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361844

RESUMO

The stress-strain curves and mechanical properties of Shuangjiangkou granite were obtained using five groups of conventional triaxial tests under various confining pressures using MTS815 rock test equipment. From the microscale, mesoscale, and macroscale perspectives, four types of mechanisms that contribute to energy dissipation during granite deformation were investigated. Based on the energy dissipation ratio, a new approach for estimating crack closure stress and damage stress is proposed. The energy dissipation ratio was substituted into the Weibull distribution function, and then a new nonlinear statistical damage constitutive model of granite based on the energy dissipation ratio was constructed after Biot's theory was modified per the Lemaitre strain equivalence principle. By comparing experimental data with theoretical values estimated by the model, the model's rationality and correctness were confirmed.

4.
Sci Rep ; 11(1): 21825, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750453

RESUMO

The initial in situ stress field influences underground engineering design and construction. Since the limited measured data, it is necessary to obtain an optimized stress field. Although the present stress field can be obtained by valley evolution simulation, the accuracy of the ancient stress field has a remarkable influence. This paper proposed a method using the generative adversarial network (GAN) to obtain optimized lateral stress coefficients of the ancient stress field. A numerical model with flat ancient terrain surfaces is established. Utilizing the nonlinear relationship between measured stress components and present burial depth, lateral stress coefficients of ancient times are estimated to obtain the approximate ancient stress field. Uniform designed numerical tests are carried out to simulate the valley evolution by excavation. Coordinates, present burial depth, present lateral stress coefficients and ancient regression factors of lateral stress coefficients are input to GAN as real samples for training, and optimized ancient regression factors can be predicted. The present stress field is obtained by excavating strata layers. Numerical results show the magnitude and distribution law of the present stress field match well with measured points, thus the proposed method for the stress field inversion is effective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...