Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 6(15): 12203-13, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25014119

RESUMO

This study attempts to understand the intrinsic impact of different morphologies of nanocrystals on their electrochemical stripping behaviors toward heavy metal ions. Two differently shaped Fe3O4 nanocrystals, i.e., (100)-bound cubic and (111)-bound octahedral, have been synthesized for the experiments. Electrochemical results indicate that Fe3O4 nanocrystals with different shapes show different stripping behaviors toward heavy metal ions. Octahedral Fe3O4 nanocrystals show better electrochemical sensing performances toward the investigated heavy metal ions such as Zn(II), Cd(II), Pb(II), Cu(II), and Hg(II), in comparison with cubic ones. Specifically, Pb(II) is found to have the best stripping performance on both the (100) and (111) facets. To clarify these phenomena, adsorption abilities of as-prepared Fe3O4 nanocrystals have been investigated toward heavy metal ions. Most importantly, combined with theoretical calculations, their different electrochemical stripping behaviors in view of facet effects have been further studied and enclosed at the level of molecular/atom. Finally, as a trial to find a disposable platform completely free from noble metals, the potential application of the Fe3O4 nanocrystals for electrochemical detection of As(III) in drinking water is demonstrated.


Assuntos
Eletroquímica/métodos , Metais Pesados/química , Nanopartículas/química , Nanotecnologia/métodos , Adsorção , Cádmio/química , Cobre/química , Cristalização , Água Potável/química , Eletrodos , Monitoramento Ambiental , Íons , Chumbo/química , Mercúrio/química , Microscopia Eletrônica de Varredura , Software , Poluentes Químicos da Água/análise , Difração de Raios X , Zinco/química
2.
ACS Appl Mater Interfaces ; 6(5): 3689-95, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24533880

RESUMO

A facile synthesis of novel urchin-like NiCo2O4 hierarchical hollow microspheres has been developed based on a template-free solvothermal and subsequent calcination method. The growth process of NiCo2O4 hollow microsphere precursors has been investigated, and a plausible mechanism was proposed. Because of their unique structure and high specific surface area, these NiCo2O4 hollow microspheres displayed enhanced electrochemical properties in methanol electrooxidation and determination of heavy-metal ions compared with solid urchin-like NiCo2O4 microspheres, Co3O4, and NiO microspheres. The good electrochemical performances suggested that these unique hierarchical NiCo2O4 hollow microspheres could be promising materials for energy and environmentally related applications.

3.
Sci Rep ; 3: 3115, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24178058

RESUMO

Specific determination/monitoring of trace mercury ions (Hg(2+)) in environmental water is of significant importance for drinking safety. Complementarily to conventional inductively coupled plasma mass spectrometry and atomic emission/absorption spectroscopy, several methods, i.e., electrochemical, fluorescent, colorimetric, and surface enhanced Raman scattering approaches, have been developed recently. Despite great success, many inevitably encounter the interferences from other metal ions besides the complicated procedures and sophisticated equipments. Here we present a molecular-gap device for specific determination of trace Hg(2+) in both standardized solutions and environmental samples based on conductivity-modulated glutathione dimer. Through a self-assembling technique, a thin film of glutathione monolayer capped Au nanoparticles is introduced into 2.5 µm-gap-electrodes, forming numerous double molecular layer gaps. Notably, the fabricated molecular-gap device shows a specific response toward Hg(2+) with a low detection limit actually measured down to 1 nM. Theoretical calculations demonstrate that the specific sensing mechanism greatly depends on the electron transport ability of glutathione dimer bridged by heavy metal ions, which is determined by its frontier molecular orbital, not the binding energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...