Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 324: 117740, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38219885

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Abrus cantoniensis Hance (AC), an abrus cantoniensis herb, is a Chinese medicinal herb used for the treatment of hepatitis. Total saponins extracted from AC (ACS) are a compound of triterpenoid saponins, which have protective properties against both chemical and immunological liver injuries. Nevertheless, ACS has not been proven to have an influence on drug-induced liver injury (DILI). AIM OF THE STUDY: This study used network pharmacology and experiments to investigate the effects of ACS on acetaminophen (APAP)-induced liver injury. MATERIALS AND METHODS: The targets associated with ACS and DILI were obtained from online databases. Cytoscape software was utilized to construct a "compound-target" network. In addition, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to analyze the related signaling pathways impacted by ACS. AutoDock Vina was utilized to evaluate the binding affinity between bioactive compounds and the key targets. To validate the findings of network pharmacology, in vitro and in vivo experiments were conducted. Cell viability assay, transaminase activity detection, immunofluorescence assay, immunohistochemistry staining, RT-qPCR, and western blotting were utilized to explore the effects of ACS. RESULTS: 25 active compounds and 217 targets of ACS were screened, of which 94 common targets were considered as potential targets for ACS treating APAP-induced liver injury. GO and KEGG analyses showed that the effects of ACS exert their effects on liver injury through suppressing inflammatory response, oxidative stress, and apoptosis. Molecular docking results demonstrated that core active compounds of ACS were successfully docked to core targets such as CASP3, BCL2L1, MAPK8, MAPK14, PTGS2, and NOS2. In vitro experiments showed that ACS effectively attenuated APAP-induced damage through suppressing transaminase activity and attenuating apoptosis. Furthermore, in vivo studies demonstrated that ACS alleviated pathological changes in APAP-treated mice and attenuated inflammatory response. Additionally, ACS downregulated the expression of iNOS, COX2, and Caspase-3, and upregulated the expression of Bcl-2. ACS also suppressed the MAPK signaling pathway. CONCLUSIONS: This study demonstrated that ACS is a hepatoprotective drug through the combination of network pharmacology and in vitro and in vivo experiments. The findings reveal that ACS effectively attenuate APAP-induced oxidative stress, apoptosis, and inflammation through inhibiting the MAPK signaling pathway. Consequently, this research offers novel evidence supporting the potential preventive efficacy of ACS.


Assuntos
Abrus , Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Animais , Camundongos , Acetaminofen/toxicidade , Farmacologia em Rede , Simulação de Acoplamento Molecular , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Transaminases
2.
Front Oncol ; 12: 1105454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686807

RESUMO

Hepatocellular carcinoma is one of the malignancies worldwide with a high mortality rate and an increasing incidence. Molecular Targeted agents are its common first-line treatment. Organoid technology, as a cutting-edge technology, is gradually being applied in the development of therapeutic oncology. Organoid models can be used to perform sensitivity screening of targeted drugs to facilitate the development of innovative therapeutic agents for the treatment of hepatocellular carcinoma. The purpose of this review is to provide an overview of the opportunities and challenges of hepatocellular carcinoma organoids in targeted drug sensitivity testing as well as a future outlook.

3.
J Ethnopharmacol ; 249: 112366, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678415

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatitis B, an infectious disease caused by hepatitis B virus (HBV), is still a serious problem affecting global public health. Abrus cantoniensis Hance (AC), a traditional Chinese medicinal herb, has been used as a folk medicine for treating hepatitis in China from ancient times. However, its active ingredients are still unclear. AIM OF STUDY: Our previous study indicated that saponins extracted from AC (ACS) were the active anti-HBV ingredients in AC. This study aimed to further investigate the anti-HBV effect of ACS in vitro and in vivo. MATERIALS AND METHODS: HepG2.2.15 cells which consecutively produce HBV DNA and HBV antigens were used for in vitro test, and C57BL/6 mice infected by a recombinant adeno-associated virus 8 vector carrying 1.3 copies of HBV genome (rAAV8-HBV1.3) were used for in vivo test. The histopathological changes and the immune indices were evaluated in mice model. Genechip was conducted to identify genes and pathways regulated by ACS in HepG2.2.15 cells. RESULTS: In this study, we confirmed that ACS treatment prominently inhibited production of HBV DNA, Hepatitis Be Antigen (HBeAg), and Hepatitis B surface antigen (HBsAg) in HepG2.2.15 cells. ACS treatment also decreased serum HBsAg, HBeAg, and HBV DNA level in rAAV8-1.3HBV transfected mice, which is in accordance with the in vitro results. Moreover, HBV infection-induced liver inflammation was significantly relieved by ACS, which could be observed in H&E staining and immunohistochemistry of HBcAg. ACS treatment elevated IFN-γ level in mice serum and increased CD4+ T cell percentage in splenocytes. KEGG pathway analysis showed that phenylalanine metabolism pathway and tyrosine metabolism pathway were greatly regulated by ACS treatment. CONCLUSION: ACS exerted potent inhibitory effects on HBV replication both in vivo and in vitro, which may provide basis for its potential clinical usage.


Assuntos
Abrus/química , Vírus da Hepatite B/efeitos dos fármacos , Saponinas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , China , DNA Viral/efeitos dos fármacos , DNA Viral/genética , Modelos Animais de Doenças , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Antígenos do Núcleo do Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transfecção/métodos , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...