Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(5): e202313361, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38088045

RESUMO

Cathodic CO2 adsorption and activation is essential for high-temperature CO2 electrolysis in solid oxide electrolysis cells (SOECs). However, the component of oxygen ionic conductor in the cathode displays limited electrocatalytic activity. Herein, stable single Ruthenium (Ru) atoms are anchored on the surface of oxygen ionic conductor (Ce0.8 Sm0.2 O2-δ , SDC) via the strong covalent metal-support interaction, which evidently modifies the electronic structure of SDC surface for favorable oxygen vacancy formation and enhanced CO2 adsorption and activation, finally evoking the electrocatalytic activity of SDC for high-temperature CO2 electrolysis. Experimentally, SOEC with the Ru1 /SDC-La0.6 Sr0.4 Co0.2 Fe0.8 O3-δ cathode exhibits a current density as high as 2.39 A cm-2 at 1.6 V and 800 °C. This work expands the application of single atom catalyst to the high-temperature electrocatalytic reaction in SOEC and provides an efficient strategy to tailor the electronic structure and electrocatalytic activity of SOEC cathode at the atomic scale.

2.
Food Sci Nutr ; 11(10): 6231-6240, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823167

RESUMO

The Lentinula edodes stipe (LES), a by-product of L. edodes fruiting body processing, is rich in dietary fiber, protein, and polysaccharides, which can be served as the functional ingredient in dairy products. In this study, stirred yogurts fortified with 1%, 2%, and 3% LES were prepared, and the effects of LES on the changes in color, pH, titratable acidity (TA), viable lactic acid bacteria (LAB) cells, syneresis, viscosity, texture, and antioxidant activity of the flavored yogurt were monitored at the beginning and the end of storage. The LES decreased the lightness, increased the red-green color values and yellow-blue color values, decreased the pH values, and increased the contents of TA, the viable LAB cells, and the antioxidant activity of yogurt samples in a dose-dependent manner. The addition of LES showed double-edged effects on the texture of yogurt, which significantly reduced firmness and viscosity but decreased the syneresis. Compared with plain yogurt, the 2% LES-fortified yogurt exhibited similar index values of texture parameters and higher scores of the appearance, fermented odor, taste quality, and overall acceptance, suggesting that this might be the optimal dose for industrial production. After cold storage for 28 days, pH values of all yogurt samples further decreased with increasing of TA. Interestingly, syneresis of LES-fortified yogurt decreased and the viable LAB cells and antioxidant activity of 3% LES-fortified yogurt slightly decreased. Therefore, LES is beneficial to improve physicochemical, sensory, and antioxidant properties of yogurt, which has the potential to be used in functional dairy products.

3.
Food Res Int ; 173(Pt 1): 113358, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803660

RESUMO

An unrecorded wild mushroom Lactarius hatsudake from Nanyue mountainous region in China was identified. Subsequently, comparative investigation on the nutritional value, elemental bioaccumulation, and antioxidant activity was performed in the fruiting body (FB) and mycelium (MY) samples of this species. It revealed that the contents of moisture (87.66 ± 0.16 g/100 g fw) and ash (6.97 ± 0.16 g/100 g dw) were significantly higher in FB, and the total carbohydrate, fat, and protein concentrations of FB were similar to those in MY. Among nutritionally important elements, FB possessed higher concentrations of potassium (37808.61 ± 1237.38 mg/kg dw), iron (470.69 ± 85.54 mg/kg dw), and zinc (136.13 ± 5.16 mg/kg dw), whereas MY was a better source of magnesium (1481.76 ± 18.03 mg/kg dw), calcium (2203.87 ± 69.61 mg/kg dw), and sodium (277.44 ± 22.93 mg/kg dw). According to the health risk estimation, FB might pose an aluminum-related health problem when a prolonged period of exposure, while MY was risk-free for consumers. The results of antioxidant capacity (1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays) in FB and MY were within the range of 104.19 ± 5.70 mg ascorbic acid equivalents (AAE)/g to 169.50 ± 4.94 mg AAE/g, and half maximal effective concentration EC50 values ranged from 0.23 ± 0.01 mg/mL to 0.62 ± 0.05 mg/mL. The aqueous extracts of MY demonstrated a strong ABTS radical scavenging capacity with the highest AAE value.


Assuntos
Antioxidantes , Ascomicetos , Antioxidantes/análise , Bioacumulação , Ácido Ascórbico , Carpóforos/química , Micélio , Valor Nutritivo
4.
Chemphyschem ; 24(3): e202200502, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36117144

RESUMO

The halide anions present in the electrolyte improve the Faradaic efficiencies (FEs) of the multi-hydrocarbon (C2+ ) products for the electrochemical reduction of CO2 over copper (Cu) catalysts. However, the mechanism behind the increased yield of C2+ products with the addition of halide anions remains indistinct. In this study, we analysed the mechanism by investigating the electronic structures and computing the relative free energies of intermediates formed from CO2 to C2 H4 on the Cu (100) facet based on density functional theory (DFT) calculations. The results show that formyl *CHO from the hydrogenation reaction of the adsorbed *CO acts as the key intermediate, and the C-C coupling reaction occurs preferentially between *CHO and *CO with the formation of a *CHO-CO intermediate. We then propose a free-energy pathway of C2 H4 formation. We find that the presence of halide anions significantly decreases the free energy of the *CHOCH intermediate, and enhances desorption of C2 H4 in the order of I- >Cl- >Br- >F- . Lastly, the obtained results are rationalized through Bader charge analysis.

5.
RSC Adv ; 12(36): 23416-23426, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36090444

RESUMO

The Fischer-Helferich glycosidation reaction is generally the initial step in the conversion of glucose to levulinate in alcohol media. However, the relevant molecular mechanism catalyzed by Al-based catalysts is still not well understood. In this work, the reaction mechanism of the glycosidation from glucose to methyl glycosides catalyzed by Al3+ coordinated with methanol/methoxyl was investigated through density functional theory (DFT) calculations. The whole reaction process includes ring-opening, addition, and ring-closure events. The addition of methanol to the ring-opening structure of glucose makes the electronegativity of C1 site stronger to proceed with the following ring-closure reaction. Among the 28 kinds of ways of ring-closure reaction, the most preferred way is to close the loop through the six-membered ring (O5-C1) to generate methyl glucoside (MDGP). The rate-determining step is the ring-closure and the Al3+ shows a great catalytic effect which is mainly reflected in coordinating with the solvents to transfer protons. The results would be helpful to understanding the Fischer-Helferich glycosidation mechanism catalyzed by Al-based catalysts and comprehend the conversion of glucose to high value-added chemicals.

6.
Phys Chem Chem Phys ; 23(34): 18659-18668, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612403

RESUMO

Ionic liquids (ILs) have shown high catalytic activity in the degradation of poly(ethylene terephthalate) (PET), but the effects of the anions and cations, as well as the mechanism, remain ambiguous. Glycolysis is an important recycling method that converts waste PET into monomers through various chemical reactions. To reveal the role of ILs and the molecular mechanism of the glycolysis of PET, density functional theory (DFT) calculations have been carried out for the possible pathways for the generation of bis(hydroxyethyl)terephthalate (BHET) catalyzed by isolated anions/cations and ion pairs at different sites. The pathway with the lowest barrier for the glycolysis of PET is the cleavage of the C-O ester bond, which generates the BHET monomer. The synergistic effects of the cations and anions play a critical role in the glycolysis of PET. The cations mainly attack the carbonyl oxygen of PET to catalyze the reaction, and the anions mainly form strong H-bonds with PET and ethylene glycol (EG). In terms of the mechanism, the H-bonds render the hydroxyl oxygen of EG more electronegative. The cation coordinates the carbonyl oxygen of the ester, and the hydroxyl oxygen of EG attacks the ester group carbon of PET, with proton transfer to the carbonyl oxygen. A four-membered-ring transition state would be formed by PET, EG, and the IL catalyst, which regularly accelerates the degradation of PET. These results provide fundamental help in understanding the roles of ILs and the mechanism of IL-catalyzed PET degradation.

7.
Chemphyschem ; 22(10): 968-974, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33749087

RESUMO

Nowadays, hydrogen activation by frustrated Lewis pairs (FLPs) and their applications are one of the emerging research topics in the field of catalysis. Previous studies have shown that the thermodynamics of this reaction is determined by electronic structures of FLPs and solvents. Herein, we investigated systems consisting of typical FLPs and ionic liquids (ILs), which are well known by their large number of types and excellent solvent effects. The density functional theory (DFT) calculations were performed to study the thermodynamics for H2 activation by both inter- and intra-molecular FLPs, as well as the individual components. The results show that the computed overall Gibbs free energies in ILs are more negative than that computed in toluene. Through the thermodynamics partitioning, we find that ILs favor the H-H cleavage elemental step over the elemental steps of proton attachment, hydride attachment and zwitterionic stabilization. Moreover, the results show that these effects are strongly dependent on the type of FLPs, where intra-molecular FLPs are more affected compared to the inter-molecular FLPs.

8.
Exp Eye Res ; 202: 108353, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171193

RESUMO

Mouse Müller cells, considered as dormant retinal progenitors, often respond to retinal injury by undergoing reactive gliosis rather than displaying neural regenerative responses. Tumor necrosis factor alpha (TNFα) is a key cytokines induced after injury and implicated in mediating inflammatory and neural regenerative responses in zebrafish. To investigate the involvement of TNFα in mouse retinal injury, adult C57BL/6J mice were subjected to light damage for 14 consecutive days. TNFα was elevated in the retina of mice exposed to light damage, which induced Müller cell proliferation in vitro. Affymetrix microarray showed that, in Müller cells, TNFα induces up-regulation of inflammatory and proliferation-related genes, including NFKB2, leukemia inhibitory factor, interleukin-6, janus kinase (Jak) 1, Jak2, signal transducer and activator of transcription (Stat) 1, Stat2, mitogen-activated protein kinase (MAPK) 7, and MAP4K4 but down-regulation of neuroprogenitor genes, including Sox9, Ascl1, Wnt2 and Hes1. Blocking the Jak/Stat and MAPK pathways attenuated TNFα-induced Müller cell proliferation. These results suggest that TNFα may drive the proliferation and inflammatory response, rather than the neural regenerative potential, of mouse Müller cells.


Assuntos
Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/genética , Fator de Necrose Tumoral alfa/farmacologia , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Células Ependimogliais/citologia , Células Ependimogliais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Modelos Animais , RNA/genética , Transdução de Sinais
9.
Int Ophthalmol ; 41(3): 835-843, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33184676

RESUMO

PURPOSE: To evaluate the time trend of axial length (AL) and associated factors in 4- and 5-year-old children in Shanghai from 2013 to 2019. METHODS: This was a 7-year observational study of 985 four-year-old and 1059 five-year-old children in Shanghai. AL, horizontal and vertical corneal curvature, spherical equivalent (SE), and body height and weight were measured. Furthermore, a questionnaire was collected, including time outdoors and bad eyesight habits. RESULTS: In 4-year-old children, no significant difference was found in AL (P = 0.526), but significant differences were observed in SE (P = 0.001), horizontal corneal curvature (P = 0.006), vertical corneal curvature (P = 0.004), height (P < 0.001), and weight (P = 0.022) from 2013 to 2019. In 5-year-old children, no significant differences were found in AL (P = 0.304), SE (P = 0.200), or weight (P = 0.292), but significant differences were observed in horizontal corneal curvature (P = 0.040), vertical corneal curvature (P = 0.015), and height (P < 0.001) from 2013 to 2019. Multivariate analyses revealed that AL was mainly significantly associated with boys and time outdoors in the 4- and 5-year-old children. CONCLUSIONS: The AL of 4- and 5-year-old children remained relatively stable in Shanghai from 2013 to 2019. Longitudinal studies are needed to confirm the relationship between AL elongation and environmental risk factors.


Assuntos
Comprimento Axial do Olho , Córnea , Pré-Escolar , China/epidemiologia , Humanos , Estudos Longitudinais , Masculino , Refração Ocular
10.
ChemSusChem ; 13(22): 5945-5953, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32964672

RESUMO

Oxidation of lignin to value-added aromatics through selective C-C bond cleavage via metal-free and mild strategies is promising but challenging. It was discovered that the cations of ionic liquids (ILs) could effectively catalyze this kind of strong bond cleavage by forming multiple weak hydrogen bonds, enabling the reaction conducted in air at temperature lower than 373 K without metal-containing catalysts. The cation [CPMim]+ (1-propylronitrile-3-methylimidazolium) afforded the highest efficiency in C-C bond cleavage, in which high yields (>90 %) of oxidative products were achieved. [CPMim]+ could form three ipsilateral hydrogen bonds with the oxygen atom of C=O and ether bonds at both sides of the C-C bond. The weak bonds joint effects could promote adjacent C-H bond cleave to form free radicals and thereby catalyze the fragmentation of the strong C-C. This work opens up an eco-friendly and energy-efficient route for direct valorization of lignin by enhancing IL properties via tuning the cation.

11.
Phys Chem Chem Phys ; 22(5): 2878-2886, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31950118

RESUMO

Keggin-type polyoxometalate derived ionic liquids (POM-ILs) have recently been presented as effective solvent systems for biomass delignification. To investigate the mechanism of lignin dissolution in POM-ILs, the system involving POM-IL ([C4C1Im]3[PW12O40]) and guaiacyl glycerol-ß-guaiacyl ether (GGE), which contains a ß-O-4 bond (the most dominant bond moiety in lignin), was studied using quantum mechanical calculations and molecular dynamics simulations. These studies show that more stable POM-IL structures are formed when [C4C1Im]+ is anchored in the connecting four terminal oxygen region of the [PW12O40]3- surface. The cations in POM-ILs appear to stabilize the geometry by offering strong and positively charged sites, and the POM anion is a good H-bond acceptor. Calculations of POM-IL interacting with GGE show the POM anion interacts strongly with GGE through many H-bonds and π-π interactions which are the main interactions between the POM-IL anion and GGE and are strong enough to force GGE into highly bent conformations. These simulations provide fundamental models of the dissolution mechanism of lignin by POM-IL, which is promoted by strong interactions of the POM-IL anion with lignin.


Assuntos
Líquidos Iônicos/química , Lignina/química , Simulação de Dinâmica Molecular , Teoria Quântica , Compostos de Tungstênio/química , Guaifenesina/análogos & derivados , Guaifenesina/química , Ligação de Hidrogênio , Lignina/metabolismo , Solubilidade , Eletricidade Estática
12.
Carbohydr Res ; 487: 107882, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31812877

RESUMO

As a new kind of solvent and catalyst, the functionalized ionic liquids (ILs) had been successfully used in the conversion of fructose to high value-added biofuels. In this work, a detailed density functional theory (DFT) calculation had been carried out to investigate the interactions of fructose-ILs system. To study the effect of different anions and cations on the interaction with fructose, 25 different kinds of functionalized imidazolium-based ILs were calculated by using M06-2X-D3/6-311 + G** level. It was found that the interaction energies of fructose-anions were higher than those of the fructose-cations. The interaction will become stronger for the fructose and ILs when the alkyl chain of imidazolium-based cations was replaced with a functional group (COOH, OH or HSO3). However, when the length of the alkyl chain increased, it will result in a decrease in interaction energy due to the steric effect. In the anions (Y-SO3), the greater electronegativity of SO3 will lead to strong interaction with fructose. Also, this work simulates the interaction of fructose and ion pairs, with the results showing that hydrogen bonds (H-bonds) and π-stacking play an important role in the system. The present study provided basic aids to understand the structures and noncovalent interaction of fructose and functionalized ILs as well as the microscopic mechanism of fructose dissolution in the ILs.


Assuntos
Teoria da Densidade Funcional , Frutose/química , Líquidos Iônicos/química , Ânions/química , Cátions/química , Estrutura Molecular
13.
Ann Clin Lab Sci ; 49(4): 539-545, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31471346

RESUMO

OBJECTIVE: To detect the mutations in the fibronectin-1 gene (FBN1) of four Chinese families with autosomal dominant Marfan syndrome (MFS), and to discuss the associated phenotypes. METHODS: We examined ten patients, and five non-carriers, in four Chinese families with autosomal dominant Marfan syndrome (MFS) for FBN1 mutations. Comprehensive physical, ophthalmic, and cardiovascular examinations were performed on the family members. The FBN1 gene was amplified with PCR from the DNA of the patients and their relatives. The amplified products were sequenced and compared with a reference sequence from the GenBank database. The changes in the structure and function of the protein caused by the amino acid substitution were investigated with a bioinformatics analysis. RESULTS: In our study, sequencing FBN1 revealed three novel mutations, and one mutation which was found earlier in 2012. One of the novel mutations is c.649T>C in exon 7, which results in the substitution tryptophan by arginine at codon 217 (p.Trp217Arg), the other is a splice defect in intron 39 (c.4816+1G>A), and the third one is c.407G>T in exon 5, which altered an amino acid at residue 136 from Cysteine to Phenylalanine (p.Cys136Phe). The recurrent mutation was c.4151T>C in exon 34, resulting in methionine being replaced by threonine (p.Met1384Thr). The occurrence of the mutations correlated strongly with the phenotypes of the patients, and no mutation was detected in the normal relatives of the affected patients. CONCLUSIONS: In this study, three novel and a recurrent FBN1 mutations were detected. The results expand the mutation spectrum of FBN1, helping in the study of molecular pathogenesis of MFS and Marfan-related disorders.


Assuntos
Povo Asiático/genética , Fibrilina-1/genética , Síndrome de Marfan/genética , Mutação/genética , Segmento Anterior do Olho/patologia , Sequência de Bases , Análise Mutacional de DNA , Éxons/genética , Família , Feminino , Heterozigoto , Humanos , Masculino , Linhagem
14.
ChemSusChem ; 12(17): 4005-4013, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31291505

RESUMO

The degradation of lignin into aromatic products is very important, but harsh conditions and metal-based catalysts are commonly needed to cleave the inert bonds. Herein, an efficient self-initiated radical photochemical degradation for lignin-derived aryl ethers through ionic liquids (ILs) induction is demonstrated. The C-C/C-O bonds can be cleaved efficiently through free-radical-mediated reaction in the binary-ILs system 1-propenyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide [PMim][NTf2 ] and the Brønsted acid 1-propylsulfonic-3-methylimidazolium trifluoromethanesulfonate ([PrSO3 HMim][OTf]) under ambient conditions. [PMim][NTf2 ] initiates the reaction by promoting the cleavage of the Cß -H bond, and [PrSO3 HMim][OTf] catalyzes the subsequent C-O-C bond fragmentation. Furthermore, alkyl, hydroxyl, and peroxy radicals are detected, which suggests degradation based on a photochemical free-radical process. Additionally, alkali lignin could also be degraded in the IL system. This work sheds light on sustainable biomass utilization through a self-initiated radical photochemical strategy under metal-free and mild conditions.

15.
RSC Adv ; 8(15): 8209-8219, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35541995

RESUMO

Ionic liquids (ILs) present superior catalytic performance in the glycolysis of ethylene terephthalate (PET). To investigate the microscopic degradation mechanism of PET, density functional theory (DFT) calculations have been carried out for the interaction between ILs and dimer, which is considered to symbolize PET. We found that hydrogen bonds (H-bonds) play a critical role in the glycolysis process. In this study, 24 kinds of imidazolium-based and tertiary ammonium-based ILs were used to study the effect of different anions and cations on the interaction with PET. Natural bond orbital (NBO) analysis, atoms in molecules (AIM) and reduced density gradient (RDG) approaches were employed to make in-depth study of the nature of the interactions. It is concluded that the interaction of cations with dimer is weaker than that of anions and when the alkyl chain in the cations is replaced by an unsaturated hydrocarbon, the interaction will become stronger. Furthermore, anions play more important roles than cations in the actual interactions with dimer. When the hydrogen of methyl is replaced by hydroxyl or carboxyl, the interaction becomes weak for the amino acid anions and dimer. This work also investigates the interaction between dimer and ion pairs, with the results showing that anions play a key role in forming H-bonds, while cations mainly attack the oxygen of carbonyl and have a π-stacking interaction with dimer. The comprehensive mechanistic study will help researchers in the future to design an efficient ionic liquid catalyst and offer a better understanding of the mechanism of the degradation of PET.

16.
Langmuir ; 33(31): 7600-7605, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28700242

RESUMO

An intriguing p-n conversion of thermoelectric property was observed in a water-ionic liquid ([EMIm][Ac]) binary system with precise control over water content. The highest p-type and n-type Seebeck coefficient were optimized at water-[EMIm][Ac] molar ratio of 2:1 and 4:1, respectively. DFT calculation illustrates that a configuration of solvent separation ion pairs is preferred at the water-[EMIm][Ac] molar ratio of 4:1, leading to the p-n conversion through weakening interaction between anion clusters and gold electrodes. Furthermore, p-n thermocapacitive converters were integrated to enhance the output Seebeck voltages. This work opens up new perspectives for harvesting low grade heat with the use of fluidic materials.

17.
J Org Chem ; 82(3): 1591-1599, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28111951

RESUMO

A mild oxidative esterification of various aromatic aldehydes by sulfate radical redox system was presented. In the reaction pathway exploration, the transiency of MeOSO3- was disclosed, which was generated from esterification between the in situ generated HSO4- and MeOH, a rate-limiting step in the process. More importantly, the selectivity-controlling step was represented by the subsequent nucleophilic displacement between MeOSO3- and aldehydes. The ionic oxidant 1a ((NH4)2S2O8) with more N-H numbers in the cation, as compared with 1c ((n-Bu4N)2S2O8) and 1d ((PyH)2S2O8), has better performance in the oxidative esterification of aldehydes.

18.
Phys Chem Chem Phys ; 17(27): 17894-905, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26095890

RESUMO

In recent years, a variety of ionic liquids (ILs) were found to be capable of dissolving cellulose and mechanistic studies were also reported. However, there is still a lack of detailed information at the molecular level. Here, long time molecular dynamics simulations of cellulose bunch in 1-ethyl-3-methylimidazolium acetate (EmimAc), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-butyl-3-methylimidazolium chloride (BmimCl) and water were performed to analyze the inherent interaction and dissolving mechanism. Complete dissolution of the cellulose bunch was observed in EmimAc, while little change took place in EmimCl and BmimCl, and nothing significant happened in water. The deconstruction of the hydrogen bond (H-bond) network in cellulose was found and analyzed quantitatively. The synergistic effect of cations and anions was revealed by analyzing the whole dissolving process. Initially, cations bind to the side face of the cellulose bunch and anions insert into the cellulose strands to form H-bonds with hydroxyl groups. Then cations start to intercalate into cellulose chains due to their strong electrostatic interaction with the entered anions. The H-bonds formed by Cl(-) cannot effectively separate the cellulose chain and that is the reason why EmimCl and BmimCl dissolve cellulose more slowly. These findings deepen people's understanding on how ILs dissolve cellulose and would be helpful for designing new efficient ILs to dissolve cellulose.


Assuntos
Celulose/química , Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Imidazóis/química , Eletricidade Estática , Termodinâmica , Água/química
19.
J Mol Model ; 18(6): 2483-91, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22033759

RESUMO

To investigate the effects of the substituents, substituent positions and axial chloride ligand on the geometric and electronic properties of the iron tetraphenylporphyrin (FeTPP), a series of the substituented iron tetraphenylporphyrins and their chlorides, FeT(o/p-R)PP and FeT(o/p-R)PPCl (R = -H, -Cl, -NO(2), -OH, -OCH(3)), were systematically calculated without any symmetry constraint by using DFT method. For geometric structure, the substituent position and axial Cl ligand change the configuration of the iron porphyrin obviously. The ortho-substituents prefer making the phenyls perpendicular to the porphyrin ring; the axial chloride draws the central Fe ion ~0.500 Å out of the porphyrin plane toward the ligand. With regard to electronic properties, it is found that E(LUMO) could be related to the catalytic activity. The electron-withdrawing group always lowers the energies of both frontier orbitals, while the electron-donating one heightens them simultaneously, but they affect the E(HOMO) and E(LUMO) in the same sequence, -NO(2) < -Cl < -H < -OH < -OCH(3). The substituent effects on the central Fe ion were explored by calculating NBO charge distribution, spin density and natural electron configuration.


Assuntos
Simulação por Computador , Metaloporfirinas/química , Modelos Moleculares , Eletroquímica , Modelos Químicos , Conformação Molecular , Teoria Quântica , Termodinâmica
20.
J Phys Chem B ; 116(3): 1007-17, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22201259

RESUMO

Due to their unique properties, ionic liquids (ILs) have attracted the academic and industrial attentions. However, recent controversies have focused on what are the main forces to determine the behaviors of ILs. In this work, a detailed DFT calculation was carried out to investigate the intermolecular interactions in two typical ILs, [Emim][BF(4)] and [Bmim][PF(6)]. The results indicate that hydrogen bonds (H-bonds) are the major intermolecular structural feature between cations and anions. Although the electrostatic force remains the major noncovalent force (70% of the total energy by energy decomposition calculation), the interaction energies calculated at different theoretical levels indicate that H-bond and van der Waals interactions cannot be ignored. However, the H-bonded capacities from natural bond orbital (NBO) delocalization energies do not show the consistent changes in the total interaction energies and number of H-bonds. Based on the canonical orbitals analysis, it is found that the σ-type orbital overlap and the partial charges transfer between anion and cation, finally, result in the significant energy reduction and rationalize the preferable location of anion, which is an essential understanding for the interaction and structure in the ion pair. Additionally, the strong agreement between the experimental IR spectra and the calculated vibrations implies that the structures of the larger ion clusters provide a reasonable depiction for bulk ILs at room temperature condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...