Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(9): 6264-6273, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36825285

RESUMO

An ultra-high performance humidity sensor based on a CuO/Ti3C2T X MXene has been investigated in this work. The moisture-sensitive material was fabricated by a self-assembly method. The morphology and nanostructure of the fabricated CuO/Ti3C2T X composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra. The humidity sensing abilities of the CuO/Ti3C2T X sensor in the relative humidity (RH) range from 0% to 97% were studied. The results showed that the humidity sensor had a high sensitivity of 451 kΩ/% RH, short response time (0.5 s) and recovery time (1 s), a low hysteresis value, and good repeatability. The CuO/Ti3C2T X sensor exhibited remarkable properties in human respiration rate monitoring, finger non-contact sensing, and environmental detection. The moisture-sensitive mechanism of CuO/Ti3C2T X was discussed. The fabricated CuO/Ti3C2T X showed great potential in the application of moisture-sensitive materials for ultra-high-performance humidity sensors.

2.
ACS Omega ; 8(5): 4878-4888, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777584

RESUMO

In this study, a high-performance humidity sensor based on KCl-doped CuO/SnO2 p-n heterostructures was fabricated by a ball milling-roasting method. The morphology and nanostructure of the fabricated KCl-CuO/SnO2 composite were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and nitrogen sorption analysis. The results showed that the humidity sensor had a high sensitivity of 194 kΩ/%RH, short response and recovery times of 1.0 and 1.5 s, a low hysteresis value, and good repeatability. The energy band structure and complex impedance spectrum of the KCl-CuO/SnO2 composite indicated that the excellent humidity sensing performance originated from the ionic conductivity of KCl, the formation of heterojunctions, the change in the Schottky barrier height, and the depletion of electronic depletion layers. The KCl-CuO/SnO2 sensor has great potential in respiratory monitoring, noncontact sensing of finger moisture, and environmental monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...