Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121510, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909580

RESUMO

Exposure to green environments is crucial for human health. However, urbanization has reduced the contact of urban residents with natural environments, causing a mismatch between the supply and demand for green exposure. Research in this field is hindered by the lack of long-term, reliable data sources and methodologies, leading to insufficient consideration of temporal variations in green exposure. This study presented a comprehensive methodology for assessing green exposure at a fine scale utilizing satellite images for urban tree canopy identification. We conducted a case study in the core area of Beijing from 2010 to 2020 and examined the effects of urban renewal and alleviation efforts. The results revealed a slight decrease in green exposure for the elderly over the decade, with minimal changes in equity. In contrast, green exposure for children has increased, with increasing inequality. Moreover, urban renewal has improved green exposure for nearly half of the low-supply blocks. However, a significant mismatch was observed between supply and demand for blocks with increased demand but limited supply. This study enhances the assessment of green exposure and provides guidance for planning and constructing a "Green Equal City".


Assuntos
Cidades , Urbanização , Humanos , Pequim
2.
Phys Chem Chem Phys ; 26(18): 13634-13638, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38685819

RESUMO

The cononsolvency mechanism of poly(N-isopropylacrylamide) (PNIPAM), dissolving in pure methanol (MeOH) and water (H2O) but being insoluble in MeOH-H2O mixtures, was investigated by O K-edge X-ray absorption spectroscopy (XAS). The cononsolvency emerges from the aggregation of PNIPAM with MeOH clusters, leading to the collapse of the hydrophobic hydration of PNIPAM.

3.
Comput Biol Med ; 166: 107536, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37801921

RESUMO

As a promising treatment for third-degree burns, grafting with bioengineering skin substitutes shows a capability to overcome the deficiency of donor skin. Similar mechanical properties with human skin are required for employed skin substitutes to avoid secondary damage to patients. Given the representativeness of orthotropy in mechanical properties, there is a need for developing orthotropic skin substitutes. This paper presents computational investigation as well as structural design for the fabrication of orthotropic skin substitutes. A finite element method (FEM) based mechanics simulation model for analyzing the stress field in the skin substitute was developed, by which the stress distribution in mimetic structures of the epidermis and dermis can be acquired. Moreover, the equation of Young's modulus was deduced based on the simulation result, which expressed the mechanical property of designed skin substitutes. Furthermore, several structures of skin substitutes were proposed and their calculated Young's modulus ranged from 21.87 kPa to 213.32 kPa, which was similar to the human skin. Ultimately, uniaxial tensile tests were performed for three types of 3D-printed orthotropic skin substitutes, which validates the feasibility to regulate Young's modulus by regulating the structure of fabricated skin substitutes.

4.
Nat Commun ; 14(1): 2386, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185270

RESUMO

Defects in metal-organic frameworks (MOFs) have great impact on their nano-scale structure and physiochemical properties. However, isolated defects are easily concealed when the frameworks are interrogated by typical characterization methods. In this work, we unveil the presence of solvent-derived formate defects in MOF-74, an important class of MOFs with open metal sites. With multi-dimensional solid-state nuclear magnetic resonance (NMR) investigations, we uncover the ligand substitution role of formate and its chemical origin from decomposed N,N-dimethylformamide (DMF) solvent. The placement and coordination structure of formate defects are determined by 13C NMR and density functional theory (DFT) calculations. The extra metal-oxygen bonds with formates partially eliminate open metal sites and lead to a quantitative decrease of N2 and CO2 adsorption with respect to the defect concentration. In-situ NMR analysis and molecular simulations of CO2 dynamics elaborate the adsorption mechanisms in defective MOF-74. Our study establishes comprehensive strategies to search, elucidate and manipulate defects in MOFs.

5.
BMC Plant Biol ; 23(1): 155, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36945024

RESUMO

BACKGROUND: Understanding the relationship between human evolution and environmental changes is the key to lifting the veil on human origin. The hypothesis that environmental changes triggered the divergence of humans from apes (ca. 9.3-6.5 million years ago, Ma) has been poorly tested because of limited continuous environmental data from fossil localities. Lufengpithecus (12.5-6.0 Ma) found on the southeastern margin of the Tibetan Plateau (SEMTP) across the ape-human split provides a good chance for testing this hypothesis. RESULTS: Here, we reconstructed the habitats of L. keiyuanensis (12.5-11.6 Ma) with comprehensive vegetation, climate, and potential food web data by palaeobotanical evidence, together with other multidisciplinary data and partly tested the environment-driven hypothesis by revealing the living conditions of Lufengpithecus. CONCLUSION: A detailed comparison of hominoids on different continents reveals their behaviour and fate divergence across the ape-human split against the background of global climate change, i.e., the stable living conditions of SEMTP not only provided a so-called 'refuge' for arboreal Lufengpithecus but also acted as a 'double-edged sword', preventing their further evolution while vegetation shifts in East Africa probably stimulated the emergence of human bipedalism, and the intense climatic changes in Europe possibly prevented those hominoids from surviving that time interval. Our findings provide interesting insight into the environmental impacts on the behavioural evolution of hominoids.


Assuntos
Hominidae , Condições Sociais , Animais , Humanos , Filogenia , Ásia Oriental , Fósseis , Evolução Biológica
6.
New Phytol ; 237(6): 2467-2477, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478218

RESUMO

Buckwheat is an important crop which originated in China and spread widely across Eurasia. However, exactly where in China domestication took place remains controversial. Archaeological and palynological records suggest a longer cultivation history of buckwheat in northern China than in southwestern China, but this conflicts with phylogenetic evidence implicating southwestern China as the centre of origin and diversity of buckwheat. We investigate alternative methodologies for inferring the occurrence of buckwheat cultivation and suggest that relative abundance could provide a reliable measure for distinguishing between wild and cultivated buckwheat in both present-day and fossil samples. Approximately 12 800-yr palaeoecological record shows that Fagopyrum pollen occurred only infrequently before the early Holocene. As southwestern China entered the early agricultural period, c. 8000-7000 yr ago, a slight increase in abundance of Fagopyrum pollen was observed. Approximately 4000 yr ago, concurrent with the Pu minority beginning to develop dry-land agriculture, the abundance of Fagopyrum pollen increased significantly, suggesting the cultivation of this crop. Fagopyrum pollen rose to a maximum value c. 1270 yr ago, suggesting an intensification of agricultural activity. These findings fill a gap in the Fagopyrum pollen record in southwestern China and provide new indications that early cultivation may have occurred in this region.


Assuntos
Fagopyrum , Filogenia , China , Agricultura , Pólen
7.
Nat Commun ; 13(1): 3581, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739115

RESUMO

Achieving versatile dispersion of nanoparticles in a broad range of solvents (e.g., water, oil, and biofluids) without repeatedly recourse to chemical modifications are desirable in optoelectronic devices, self-assembly, sensing, and biomedical fields. However, such a target is limited by the strategies used to decorate nanoparticle's surface properties, leading to a narrow range of solvents for existing nanoparticles. Here we report a concept to break the nanoparticle's dispersible limit via electrochemically anchoring surface ligands capable of sensing the surrounding liquid medium and rotating to adapt to it, immediately forming stable dispersions in a wide range of solvents (polar and nonpolar, biofluids, etc.). Moreover, the smart nanoparticles can be continuously electrodeposited in the electrolyte, overcoming the electrode surface-confined low throughput limitation of conventional electrodeposition methods. The anomalous dispersive property of the smart Ag nanoparticles enables them to resist bacteria secreted species-induced aggregation and the structural similarity of the surface ligands to that of the bacterial membrane assists them to enter the bacteria, leading to high antibacterial activity. The simple but massive fabrication process and the enhanced dispersion properties offer great application opportunities to the smart nanoparticles in diverse fields.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Eletrólitos/química , Ligantes , Nanopartículas Metálicas/química , Nanopartículas/química , Prata , Solventes/química
8.
Biomedicines ; 10(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35740255

RESUMO

For the extrusion 3D printing process, the printing temperature has a significant impact on the filament formation process because the rheological properties of the printed materials are extremely thermal sensitive, which requires a high temperature control accuracy of the print head. This paper presents a numerical and experimental investigation on the temperature field of a homemade print head. A finite element simulation model for analyzing the temperature field of the print head was established, by which the temperature distribution inside the print head can be acquired. Moreover, to improve the temperature control accuracy, an improved configuration was proposed, and two schemes were compared. The temperature control error dropped from 28% to 6.2% with the improved print head, which was verified experimentally. Furthermore, printing trials were conducted by the optimized print head. The filament diameter could be regulated by changing the temperature of the print head, which validates the feasibility to control the filament diameter during the extrusion process via temperature regulation.

9.
J Phys Chem B ; 126(13): 2557-2563, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343687

RESUMO

The intrinsic nature of macrocyclic molecules to preferentially absorb a specific solute has been opening up supramolecular chemistry. Nevertheless, the determinant factor with molecular perspectives in promoting host-guest complexations remains inconclusive, due to the lack of rigorous thermodynamic examination on the guest solubility inside the host. Here, we quantify the solute-solvent energetic and entropic contributions between the end states and on the docking route during inclusion of noble gases in cucurbit[5]uril, cucurbit[6]uril, and α-cyclodextrin, using molecular dynamics simulations in combination with the potential distribution theorem. Results show that in all of the pairs examined both the solute-solvent energy and entropy favor the inclusion, while the former is rather dominant. The frequency of interior drying, which pertains to the entropic contribution, differs between the hosts and is controlled by the existence of lid water at portal and the flexibility of host framework. Moreover, the hosts exhibit various types of absorption manners, involving non-, single-, and double-free-energy barriers.


Assuntos
Solubilidade , Interações Hidrofóbicas e Hidrofílicas , Soluções , Solventes/química , Termodinâmica
10.
J Forensic Sci ; 67(2): 766-774, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34837401

RESUMO

Soil examination can provide useful forensic information about the spatial location and suspect's activities. Many techniques have been applied for soil comparison and provenance determination in criminal investigations. Pollen and diatom identification, which has the potential to provide an independent ecological assessment of soil evidence, is currently underused in forensic soil analysis. This work presents a case study of application of these methods to help criminal investigation in a murder case, which happened in an irrigation ditch in Hunan Province, southern China. Soils from the suspect's clothes, the exact crime scene spot in the irrigation ditch, along the ditch and the reference ditches were collected and analyzed. In addition to the element and mineral analysis, pollen and diatom assemblages were analyzed for further comparison. The statistical methods of hierarchical cluster and cosine similarity analysis were carried out to assist in soil comparison and provenance determination. The results showed that soil on the suspect's clothes had a high probability to share the same source with the soil from the crime scene in the irrigation ditch. The suspect confessed to murder based largely on the soil examination result even without other evidences.


Assuntos
Diatomáceas , Solo , Medicina Legal/métodos , Homicídio , Pólen
11.
Front Plant Sci ; 13: 941929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684747

RESUMO

Microbial volatile organic compounds (mVOCs) can serve as a communication channel among microorganisms, insects and plants, making them important in ecosystem. In order to understand the possible role of mVOCs in Arctic ecology, the microbes in Arctic flowers and their mVOCs and effects on plants were investigated. This study aims to isolate different yeast species from the flowers of five Arctic plant species and further to explore the function of mVOCs emitted by these microbes to plant. It was found that the composition and amount of mVOCs produced by the isolated yeasts were considerably affected by changes in incubation temperature. When the incubation temperature rose, the species of alcohols, aldehydes, esters, organic acids, and ketones increased, but substances specific to low temperature decreased or disappeared. When yeasts were co-cultured with Arabidopsis thaliana without any direct contact, mVOCs produced by the isolated yeasts inhibited the seed germination of A. thaliana at low temperatures; however, the mVOCs promoted the chlorophyll content, fresh weight, root weight and flowering rate of Arabidopsis plants. Although the overall growth-promoting effect of yeast mVOCs was higher at 20°C than at 10°C, the growth-promoting effect on roots, flowers and chlorophyll was highest at 10°C. When cultured at 10°C, the mVOCs produced by Cystofilobasidium capitatum A37, Cryptococcus sp. D41, and Sporidiobolus salmonicolor D27 had the highest growth-promoting effects on the root, flowering rate and chlorophyll content of Arabidopsis, respectively. In the co-culture system, some new mVOCs were detected, such as hendecane, tetradecane, and 1-hexanol that have been proven to promote plant growth. In addition, mVOCs of the isolated Arctic yeasts could inhibit the growth of several microorganisms, especially filamentous fungi. It was the first time to prove that mVOCs produced by the isolated yeasts had varying effects on plant growth at different incubating temperatures, providing a reference for the interactions between microorganisms and plants and their possible responses to climate change in the Arctic area. Moreover, the characteristics of promoting plant growth and inhibiting microbial growth by mVOCs of Arctic yeasts would lay a foundation for potential applications in the future.

12.
Innovation (Camb) ; 2(2): 100110, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34557760

RESUMO

The evolution of the Asian monsoon from the Late Oligocene to the Early Miocene is poorly understood. Here, we first reconstruct the precipitation data of central Tibet during 26-16 million years ago (Ma), applying the coexistence approach to sedimentary pollen data, and detect an intensified Asian monsoon with ∼1.35 Ma and ∼0.33 Ma cycles. Paleoclimate modeling is used to show the importance of paleogeographic location in the development of the paleomonsoon. In addition, the results of spectral analysis suggest that the fluctuations in the Asian monsoon during 26-16 Ma can be attributed to the long-period cyclicities in obliquity (∼1.2 Ma). These findings provide climate data that can be used to understand the Asian monsoon evolution during the Late Oligocene to Early Miocene and highlight the effects of paleogeographic patterns and long-period orbital forcings on the tectonic-scale evolution of the Asian monsoon.

14.
Front Cell Dev Biol ; 8: 135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211409

RESUMO

The bone morphogenetic protein (BMP) signaling pathway is highly conserved across many species, and its importance for the patterning of the skeletal system has been demonstrated. A disrupted BMP signaling pathway results in severe skeletal defects. Murine calvaria has been identified to have dual-tissue lineages, namely, the cranial neural-crest cells and the paraxial mesoderm. Modulations of the BMP signaling pathway have been demonstrated to be significant in determining calvarial osteogenic potentials and ossification in vitro and in vivo. More importantly, the BMP signaling pathway plays a role in the maintenance of the homeostasis of the calvarial stem cells, indicating a potential clinic significance in calvarial bone and in expediting regeneration. Following the inherent evidence of BMP signaling in craniofacial biology, we summarize recent discoveries relating to BMP signaling in the development of calvarial structures, functions of the suture stem cells and their niche and regeneration. This review will not only provide a better understanding of BMP signaling in cranial biology, but also exhibit the molecular targets of BMP signaling that possess clinical potential for tissue regeneration.

15.
Exp Ther Med ; 19(3): 1701-1710, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32104223

RESUMO

Heart disease remains the leading cause of morbidity and mortality worldwide. Induced pluripotent stem cells (iPSCs) have the ability to differentiate into cardiomyocytes (CMs), rendering this cell type to be a promising pre-cursor of cardiomyocytes for cell-based cardiac regeneration. Obtaining CMs with a high yield and purity coupled with improved subsequent survival could prove to be invaluable for the future cell replacement therapeutic strategies. Rho-associated protein kinase (ROCK) is involved in a wide range of fundamental cellular functions and serves significant roles in cardiac physiology. In the present study, human (h)iPSC-CMs were generated from iPSCs by including glycogen synthase kinase 3ß and Wnt inhibitors in the basal culture media. The possible effect of Y27632, a ROCK inhibitor, on hiPSC-CMs was then investigated. hiPSC-CMs of high purity were harvested with >96% of cells expressing cardiac troponin T. Additionally, treatment with 10 µM Y27632 significantly improved the viability of dissociated hiPSC-CMs. The effects of ROCK inhibitors Y27632 and fasudil, on the proliferation and apoptosis of hiPSC-CMs were also examined. Treatment with ROCK inhibitors markedly enhanced hiPSC-CM proliferation, by up to 2.5-fold, whilst Y27632 treatment reduced apoptosis in hiPSC-derived CMs under serum starvation and suspension by suppressing the expression of caspase-3. Taken together, data from the present study indicated that ROCK kinase inhibitors effectively improved the cultural system of hiPSC-derived CMs.

16.
Dev Dyn ; 248(10): 1009-1019, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31397024

RESUMO

BACKGROUND: The murine calvaria has several membrane bones with different tissue origins (e.g., neural crest-derived frontal bone vs. mesoderm-derived parietal bone). Neural crest-derived frontal bone exhibits superior osteogenic activities and bone regeneration. MicroRNA (miRNA) has been emerged as a crucial regulator during organogenesis and is involved in a range of developmental processes. However, the underlying roles of miRNA regulation in frontal bone and parietal bone is unknown. RESULTS: Total of 83 significantly expressed known miRNAs were identified in frontal bones versus parietal bones. The significantly enriched gene ontology and KEGG pathway that were predicted by the enrichment miRNAs were involved in several biological processes (cell differentiation, cell adhesion, and transcription), and multiple osteogenic pathways (e.g., focal adhesion, MAPK, VEGF, Wnt, and insulin signaling pathway. Focal adhesion and insulin signaling pathway were selected for target verification and functional analysis, and several genes were predicted to be targets genes by the differentially expressed miRNAs, and these targets genes were tested with significant expressions. CONCLUSIONS: Our results revealed a novel pattern of miRNAs in murine calvaria with dual tissue origins, and explorations of these miRNAs will be valuable for the translational studies to enhance osteogenic potential and bone regeneration in the clinic.


Assuntos
Osso Frontal/metabolismo , MicroRNAs/análise , Osso Parietal/metabolismo , Crânio/metabolismo , Animais , Regeneração Óssea , Adesões Focais , Insulina/metabolismo , Camundongos , MicroRNAs/fisiologia , Osteogênese , Transdução de Sinais
17.
Sci Total Environ ; 675: 235-246, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31030131

RESUMO

Previous studies have shown that heavy aerosol pollution can inhibit the surface ozone generation. More recent studies, however, have revealed that aerosol loading is positively correlated with ozone concentrations in large cities, such as Shanghai, particularly during the summer. Whether the correlation between aerosol pollution and ozone concentrations is positive or negative, it is an issue that needs to be considered by atmospheric scientists. Although the presence of ozone precursors, such as nitrogen oxide (NOx) and volatile organic compounds (VOCs), affect ozone concentrations, the roles of aerosols in the formation of ozone have rarely been investigated. Therefore, an analysis of the effect of aerosols on photochemical ozone generation via a study of the interaction of ozone and its precursors is important. In our research, we found that both aerosol and ozone concentrations were higher in Shanghai under polluted conditions than they were under clean conditions during the summer, but the ozone formation was controlled by VOCs, not by aerosol loading. The decrease in the AOD (SSA) increased (decreased) the surface UV radiation and promoted (inhibited) photochemical ozone production. We also found that the lower the concentration of photochemically active VOCs, the weaker the effect of the AOD on the ozone concentrations. The other results were shown as follows: (1) Aerosol pollution decreased the amount of UV radiation reaching the Earth's surface, but the surface UV radiation increased with increasing aerosol particle scattering; (2) Aerosol pollution inhibited the photolysis of nitrogen dioxide (NO2), while the scattering property of aerosols facilitated this phenomenon; (3) When both the concentration of ozone precursors and the SSA were constant, the ozone concentration decreased, but the attenuation rate increased significantly with an increase in AOD.

18.
Data Brief ; 18: 1022-1046, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900271

RESUMO

The data presented in this article are related to the research article entitled "Pollen spectrum, a cornerstone for tracing the evolution of the eastern central Asian desert" (JQSR 5260) (Lu et al., 2018) [1] In this paper, we supply a dataset, which provides a descriptive and general summary of pollen characteristic of desert dominant species in the eastern arid central Asia (ACA). The other important component is the illustration on pollen grains traits under light microscopy (LM) and scanning electron microscopy (SEM). Pollen grains of 56 species are extracted from voucher specimens from the PE herbarium at the Institute of Botany. It is worth noting that these species own special distribution patterns in China. The distribution maps are plotted using the Google Maps and the species distribution data at the county level supplied by the Chinese Virtual Herbarium (http://www.cvh.ac.cn/).

19.
Front Microbiol ; 9: 3065, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619151

RESUMO

Although research on microbial biogeography has made great progress in the past decade, distributions of terrestrial microbial communities in extreme environments such as Antarctica are not well understood. In addition, knowledge of whether and how historical contingencies affect microbial distributions at small spatial scales is lacking. Here, we analyzed soil-borne microbial (bacterial, archaeal, and fungal) communities in 12 quadrat plots around the Fildes Region of King George Island, maritime Antarctica, and the communities were divided into two groups according to the soil elemental compositions and environmental attributes of Holocene raised beach and Tertiary volcanic stratigraphy. Prokaryotic communities of the two groups were well separated; the prokaryotic data were primarily correlated with soil elemental compositions and were secondly correlated with environmental attributes (e.g., soil pH, total organic carbon, NO3 -, and vegetation coverage; Pearson test, r = 0.59 vs. 0.52, both P < 0.01). The relatively high abundance of P, S, Cl, and Br in Group 1 (Holocene raised beach site) was likely due to landform uplift. Lithophile-elements (Si, Al, Ca, Sr, Ti, V, and Fe) correlated with prokaryotic communities in Group 2 may have originated from weathering of Tertiary volcanic rock. No significant correlations were found between the fungal community distribution and both the soil elemental composition and environmental attributes in this study; however, Monte Carlo tests revealed that elements Sr and Ti, soil pH, sampling altitude, and moss and lichen species numbers had significant impacts on fungal communities. The elements and nutrients accumulated during the formation of different landforms influenced the development of soils, plant growth, and microbial communities, and this resulted in small-scale spatially heterogeneous biological distributions. These findings provide new evidence that geological evolutionary processes in the Fildes Region were crucial to its microbial community development, and the results highlight that microbial distribution patterns are the legacies of historical events at this small spatial scale. Based on this study, the ice-free regions in maritime Antarctica represent suitable research sites for studying the influence of geomorphological features on microbial distributions, and we envision the possibility of a site-specific landform assignment through the analysis of the soil prokaryotic community structure.

20.
PLoS One ; 12(2): e0171967, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28182711

RESUMO

The Hengduan Mountains, with a distinct altitudinal differentiation and strong vertical vegetation zonation, occupy an important position in southwestern China as a global hotspot of biodiversity. Pollen analysis of lake sediments sampled along an altitudinal gradient in this region helps us to understand how this vegetation zonation arose and how it has responded to climate change and human impacts through time. Here we present a ~30-ka pollen record and interpret it in terms of vegetational and climatic change from a 310 cm-long core from Shudu Lake, located in the Hengduan Mountains region. Our results suggest that from 30 to 22 cal. ka BP, the vegetation was dominated by steppe/grassland (comprising mainly Artemisia, Poaceae and Polygonaceae) and broad-leaved forest (primarily Quercus, Betula and Castanopsis) in the lake catchment, reflecting a relatively warm, wet climate early in this phase and slightly warmer, drier conditions late in the phase. The period between 22 and 13.9 cal. ka BP was marked by a large expansion of needle- and broad-leaved mixed forest (Pinus, Abies and Quercus) and a decline in the extent of steppe/grassland, indicating warming, drying climatic conditions followed by a cold, wet period. Between 13.9 and 3 cal. ka BP, steppe/grassland expanded and the area covered by needle- and broad-leaved mixed forest reduced, implying a fluctuating climate dominated by warm and humid conditions. After 3 cal. ka BP, the vegetation was characterized by an increase in needle-leaved forest and reduction in steppe/grassland, suggesting warming and drying climate. A synthesis of palynological investigations from this and other sites suggests that the vegetation succession patterns seen along an altitudinal gradient in northwestern Yunnan since the Late Pleistocene are comparable, but that each site has its own characteristics probably due to the influences of altitude, topography, microclimate and human impact.


Assuntos
Biodiversidade , Clima , Florestas , Fósseis , Pólen/química , Altitude , Evolução Biológica , China , Lagos , Datação Radiométrica , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...