Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2403193, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924212

RESUMO

Inverted perovskite solar cells (PSCs) attract continuing interest due to their low processing temperature, suppressed hysteresis, and compatibility with tandem cells. Considerable progress has been made with reported power conversion efficiency (PCE) surpassing 26%. Electron transport Materials (ETMs) play a critical role in achieving high-performance PSCs because they not only govern electron extraction and transport from the perovskite layer to the cathode, but also protect the perovskite from contact with ambient environment. On the other hand, the non-radiative recombination losses at the perovskite/ETM interface also limits the future development of PSCs. Compared with fullerene derivatives, non-fullerene n-type organic semiconductors feature advantages like molecular structure diversity, adjustable energy level, and easy modification. Herein, the non-fullerene ETM is systematically summarized based on the molecular functionalization strategy. Various types of molecular design approaches for producing non-fullerene ETM are presented, and the insight on relationship of chemical structure and device performance is discussed. Meantime, the future trend of non-fullerene ETM is analyzed. It is hoped that this review provides insightful perspective for the innovation of new non-fullerene ETMs toward more efficient and stable PSCs.

2.
Adv Sci (Weinh) ; 11(23): e2401313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569518

RESUMO

In this study, a novel wide-bandgap small molecule guest material, ITOA, designed and synthesized for fabricating efficient ternary organic solar cells (OSCs) ITOA complements the absorbance of the PM6:Y6 binary system, exhibiting strong crystallinity and modest miscibility. ITOA optimizes the morphology by promoting intensive molecular packing, reducing domain size, and establishing a preferred vertical phase distribution. These features contribute to improved and well-balanced charge transport, suppressed carrier recombination, and efficient exciton dissociation. Consequently, a significantly enhanced efficiency of 18.62% for the ternary device is achieved, accompanied by increased short-circuit current density (JSC), fill factor (FF), and open-circuit voltage (VOC). Building on this success, replacing Y6 with BTP-eC9 leads to an outstanding PCE of 19.33% for the ternary OSCs. Notably, the introduction of ITOA expedites the formation of the optimized morphology, resulting in an impressive PCE of 18.04% for the ternary device without any postprocessing. Moreover, the ternary device exhibits enhanced operational stability under maximum power point (MPP) tracking. This comprehensive study demonstrates that a rationally designed guest molecule can optimize morphology, reduce energy loss, and streamline the fabrication process, essential for achieving high efficiency and stability in OSCs, paving the way for practical commercial applications.

3.
Nano Lett ; 23(19): 8850-8859, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748018

RESUMO

Defect passivation is crucial to enhancing the performance of perovskite solar cells (PSCs). In this study, we successfully synthesized a novel organic compound named DPPO, which consists of a double phosphonate group. Subsequently, we incorporated DPPO into a perovskite solution. The presence of a P═O group interacting with undercoordinated Pb2+ yielded a perovskite film of superior crystallinity, greater crystal orientation, and smoother surface. Additionally, the addition of DPPO can passivate defect states and enhance upper layer energy level alignment, which will improve carrier extraction and prevent nonradiative recombination. Consequently, an impressive champion efficiency of 24.24% was achieved with a minimized hysteresis. Furthermore, the DPPO-modified PSCs exhibit enhanced durability when exposed to ambient conditions, maintaining 95% of the initial efficiency for 1920 h at an average relative humidity (RH) of 30%.

4.
Adv Mater ; 34(44): e2203794, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35771986

RESUMO

Hole-transporting layers (HTLs) are an essential component in inverted, p-i-n perovskite solar cells (PSCs) where they play a decisive role in extraction and transport of holes, surface passivation, perovskite crystallization, device stability, and cost. Currently, the exploration of efficient, stable, highly transparent and low-cost HTLs is of vital importance for propelling p-i-n PSCs toward commercialization. Compared to their inorganic counterparts, organic HTLs offer multiple advantages such as a tunable bandgap and energy level, easy synthesis and purification, solution processability, and overall low cost. Here, recent progress of organic HTLs, including conductive polymers, small molecules, and self-assembled monolayers, as utilized in inverted PSCs is systematically reviewed and summarized. Their molecular structure, hole-transport properties, energy levels, and relevant device properties and resulting performances are presented and analyzed. A summary of design principles and a future outlook toward highly efficient organic HTLs in inverted PSCs is proposed. This review aims to inspire further innovative development of novel organic HTLs for more efficient, stable, and scalable inverted PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...