Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 45(10): 11753-11765, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37145940

RESUMO

Many machine learning applications encounter situations where model providers are required to further refine the previously trained model so as to gratify the specific need of local users. This problem is reduced to the standard model tuning paradigm if the target data is permissibly fed to the model. However, it is rather difficult in a wide range of practical cases where target data is not shared with model providers but commonly some evaluations about the model are accessible. In this paper, we formally set up a challenge named Earning eXtra PerformancE from restriCTive feEDdbacks (EXPECTED) to describe this form of model tuning problems. Concretely, EXPECTED admits a model provider to access the operational performance of the candidate model multiple times via feedback from a local user (or a group of users). The goal of the model provider is to eventually deliver a satisfactory model to the local user(s) by utilizing the feedbacks. Unlike existing model tuning methods where the target data is always ready for calculating model gradients, the model providers in EXPECTED only see some feedbacks which could be as simple as scalars, such as inference accuracy or usage rate. To enable tuning in this restrictive circumstance, we propose to characterize the geometry of the model performance with regard to model parameters through exploring the parameters' distribution. In particular, for deep models whose parameters distribute across multiple layers, a more query-efficient algorithm is further tailor-designed that conducts layerwise tuning with more attention to those layers which pay off better. Our theoretical analyses justify the proposed algorithms from the aspects of both efficacy and efficiency. Extensive experiments on different applications demonstrate that our work forges a sound solution to the EXPECTED problem, which establishes the foundation for future studies towards this direction.

2.
Comput Intell Neurosci ; 2022: 1517280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045960

RESUMO

It is well known that stability, center-of-gravity balance, and concentrated-weight are key factors of the transportation safety. The reasonable formulation of the loading layout scheme ensures the safety of shipment based on fully utilizing the effective volume and load capacity of freight vehicles. This paper takes the railway mixed goods loading layout as the research object, considering the constraints such as goods loading center-of-gravity balance, the allowable moment of concentrated-weight, supporting and goods placement mode, and taking the maximum comprehensive utilization rates for both effective volume and load capacity of freight vehicle as the optimization objective, an optimization model of railway mixed goods balanced and anticoncentrated-weight loading layout considering stability is built. Additionally, this paper designs mixed goods classified and simple/general goods block composition methods. We improve the representation and selection of layout space, construct goods block selection algorithm based on the greedy d-step lookahead tree search and goods block evaluation function and propose a goods block placement strategy and update rules of layout space after goods block placement. An optimization algorithm of railway mixed goods balanced and anticoncentrated-weight load layout considering stability is designed. The results show that the formulated scheme not only ensures that the goods meet the full support constraints, but also the comprehensive utilization rate of the effective volume and load capacity of the vehicle is not less than 89%, and the probability of meeting the loading center-of-gravity balance and allowable moment of concentrated-weight are as high as 99% and 99.47%, respectively. The proposed method realizes the balanced and anticoncentrated-weight loading of railway mixed goods, ensures the safe, stable, and efficient goods loading, and provides decision support for the safe loading layout of railway goods.


Assuntos
Algoritmos , Meios de Transporte
3.
Artigo em Inglês | MEDLINE | ID: mdl-36018873

RESUMO

This article proposes differential-critic generative adversarial network (DiCGAN) to learn the distribution of user-desired data when only partial instead of the entire dataset possesses the desired property. DiCGAN generates desired data that meet the user's expectations and can assist in designing biological products with desired properties. Existing approaches select the desired samples first and train regular GANs on the selected samples to derive the user-desired data distribution. However, the selection of the desired data relies on global knowledge and supervision over the entire dataset. DiCGAN introduces a differential critic that learns from pairwise preferences, which are local knowledge and can be defined on a part of training data. The critic is built by defining an additional ranking loss over the Wasserstein GAN's critic. It endows the difference of critic values between each pair of samples with the user preference and guides the generation of the desired data instead of the whole data. For a more efficient solution to ensure data quality, we further reformulate DiCGAN as a constrained optimization problem, based on which we theoretically prove the convergence of our DiCGAN. Extensive experiments on a diverse set of datasets with various applications demonstrate that our DiCGAN achieves state-of-the-art performance in learning the user-desired data distributions, especially in the cases of insufficient desired data and limited supervision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...