Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732883

RESUMO

Intelligent compaction (IC) has emerged as a breakthrough technology that utilizes advanced sensing, data transmission, and control systems to optimize asphalt pavement compaction quality and efficiency. However, accurate assessment of compaction status remains challenging under real construction conditions. This paper reviewed recent progress and applications of smart sensors and machine learning (ML) to address existing limitations in IC. The principles and components of various advanced sensors deployed in IC systems were introduced, including SmartRock, fiber Bragg grating, and integrated circuit piezoelectric acceleration sensors. Case studies on utilizing these sensors for particle behavior monitoring, strain measurement, and impact data collection were reviewed. Meanwhile, common ML algorithms including regression, classification, clustering, and artificial neural networks were discussed. Practical examples of applying ML to estimate mechanical properties, evaluate overall compaction quality, and predict soil firmness through supervised and unsupervised models were examined. Results indicated smart sensors have enhanced compaction monitoring capabilities but require robustness improvements. ML provides a data-driven approach to complement traditional empirical methods but necessitates extensive field validation. Potential integration with digital construction technologies such as building information modeling and augmented reality was also explored. In conclusion, leveraging emerging sensing and artificial intelligence presents opportunities to optimize the IC process and address key challenges. However, cooperation across disciplines will be vital to test and refine technologies under real-world conditions. This study serves to advance understanding and highlight priority areas for future research toward the realization of IC's full potential.

2.
Dalton Trans ; 53(10): 4729-4736, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38362847

RESUMO

The need for low-carbon solar electricity production has become increasingly urgent for energy security and climate change mitigation. However, the bandgap and carrier separation critical requirements of high-efficiency solar cells are difficult to satisfy simultaneously in a single material. In this work, several van der Waals ZnIn2X4 (X = S, Se, and Te) heterostructures were designed based on density functional theory. Our results suggest that both ZnIn2S4/ZnIn2Se4 and ZnIn2Se4/ZnIn2Te4 heterostructures are direct bandgap semiconductors at the Γ point. Besides, obvious carrier spatial separations were observed in the ZnIn2S4/ZnIn2Se4 and ZnIn2Se4/ZnIn2Te4 heterostructures. Interestingly, the ZnIn2S4/ZnIn2Se4 heterostructure has a suitable bandgap of 1.43 eV with good optical absorption in the visible light range. The calculated maximum theoretical photoelectric conversion efficiency of ZnIn2S4/ZnIn2Se4 heterostructure was 32.1%, and it can be further enhanced to 32.9% under 2% tensile strain. Compared to single-layer ZnIn2X4 materials, the electron effective mass of the ZnIn2S4/ZnIn2Se4 heterostructure is relatively low, which results in high electron mobility in the heterostructure. The suitable bandgap, obvious carrier separation, high electron mobility, and excellent theoretical photoelectric conversion efficiency of the ZnIn2S4/ZnIn2Se4 heterostructure make it a promising candidate for novel 2D-based photoelectronic devices and solar cells.

3.
Polymers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447522

RESUMO

In slope ecological restoration projects, reinforcing soil and promoting vegetation growth are essential measures. Guest soil spraying technology can be used to backfill modified soil and vegetation seeds onto the slope surface, resulting in successful ecological restoration. The use of organic polymer modifiers to reinforce soil has several benefits, such as high strength, effective results, and low pollution levels. Organic polymer soil modifiers can be divided into two categories: synthetic polymer modifiers and biopolymer modifiers. This paper provides a thorough review of the properties and interaction mechanisms of two types of polymer modifiers in soil consolidation. The properties of organic polymer modifiers make them applicable in soil and vegetation engineering on slopes. These modifiers can enhance soil mechanics, infiltration, and erosion resistance and promote vegetation growth. Therefore, the suitability of organic polymer modifiers for soil and vegetation engineering on slopes is demonstrated by their properties and potential for improvement in key areas. Furthermore, challenges and future prospects for slope protection technology using organic polymer modifiers are suggested.

4.
Dalton Trans ; 52(32): 11067-11075, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523155

RESUMO

Two-dimensional Ruddlesden-Popper (2D RP) perovskites can form layered protective materials using long organic cations as "barrier" caps, which is expected to solve the problem of instability of perovskites in the working environment. In this work, we systematically studied the 2D Ruddlesden-Popper (C6H5CH2NH3)2PbI4 hybrid perovskites using density functional theory. The results reveal that the 2D (C6H5CH2NH3)2PbI4 perovskites are semiconductors with band gaps of 2.22 eV. The optical absorption peak of the 2D (C6H5CH2NH3)2PbI4 perovskite structure is located at 532 nm in the visible region. Interestingly, the optical absorption spectrum of the 2D (C6H5CH2NH3)2PbI4 perovskite structure enhanced under suitable strains. The highest optical absorption peak appears in 2D (C6H5CH2NH3)2PbI4 under a -2% strain, and its theoretical photoelectric conversion efficiency is 28.5%. More interestingly, the replacement of surface I atoms with Br is another ways to enhance the optical absorption spectrum of the 2D (C6H5CH2NH3)2PbI4 perovskite structure. The optical absorption peak blue-shifts to the high energy region, which has higher solar energy flux density than the low energy region. The good stability, tuneable band gap and excellent theoretical photoelectric conversion efficiency of the 2D (C6H5CH2NH3)2PbI4 perovskite structure make it a promising candidate for novel 2D hybrid perovskite based photoelectronic devices and solar cells.

5.
Insects ; 14(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37233055

RESUMO

Symbiotic bacteria and hormesis in aphids are the driving forces for pesticide resistance. However, the mechanism remains unclear. In this study, the effects of imidacloprid on the population growth parameters and symbiotic bacterial communities of three successive generations of Acyrthosiphon gossypii were investigated. The bioassay results showed that imidacloprid had high toxicity to A. gossypii with an LC50 of 1.46 mg·L-1. The fecundity and longevity of the G0 generation of A. gossypii decreased when exposed to the LC15 of imidacloprid. The net reproductive rate (R0), intrinsic rate of increase (rm), finite rate of increase (λ), and total reproductive rate (GRR) of G1 and G2 offspring were significantly increased, but those of the control and G3 offspring were not. In addition, sequencing data showed that the symbiotic bacteria of A. gossypii mainly belonged to Proteobacteria, with a relative abundance of 98.68%. The dominant genera of the symbiotic bacterial community were Buchnera and Arsenophonus. After treatment with the LC15 of imidacloprid, the diversity and species number of bacterial communities of A. gossypii decreased for G1-G3 and the abundance of Candidatus-Hamiltonella decreased, but Buchnera increased. These results provide insight into the resistance mechanism of insecticides and the stress adaptation between symbiotic bacteria and aphids.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36822295

RESUMO

Transient receptor potential vanilloid (TRPV) channels have been found to be the molecular target of afidopyropen, a novel insecticide that is highly effective in controlling Aphis gossypii Glover in the field. However, the TRPV genes of A. gossypii has not yet been characterized. In this study, two TRPV genes of A. gossypii (AgNan and AgIav) were cloned and their expression levels were determined by quantitative real-time PCR (RT-qPCR). The deduced amino acids of AgNan and AgIav contain all conserved domains of TRPV and share very high amino acid identity with other insect TRPVs. AgNan and AgIav expressed in all developmental stages and their expression can be induced by afidopyropen in a dose- and time-dependent manner. Moreover, we found that silencing of AgNan and AgIav by RNA interference resulted in a significant mortality increase of adult A. gossypii compared to the control, which was even higher than 93 % at five days after feeding with dsAgIav, suggesting that knockdown of AgNan and AgIav have great effects on the survival of A. gossypii. The results of this study would be helpful for determining the reasonable use of afidopyropen in the integrated pest management programs of A. gossypii and provide useful information for further functional study of TRPVs in insects.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/genética , Afídeos/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Lactonas/metabolismo , Resistência a Inseticidas/genética
7.
Int J Biol Macromol ; 224: 115-124, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265537

RESUMO

G protein-coupled receptors play important roles in mediating signal transformation and physiological processes. As a new type of insecticide target, GPCRs have attracted much attention in recent years. However, GPCRs have not yet been identified in Aphis gossypii. In the present study, a total of 87 GPCRs were identified from A. gossypii, including 65 Family A, 12 Family B, 7 Family C, and 3 Family F receptors. Most of the GPCRs in A. gossypii showed considerable sequence identity, and all of them have conserved transformmembrane domains. Newly identified GPCR genes were differentially expressed in different developmental stages and tissues. Moreover, we found that 34 GPCR genes were highly overexpressed in a sulfoxaflor-resistant strain, 4 and 10 of them were highly induced by LC15 and LC50 of sulfoxaflor, respectively. Furthermore, silencing of two highly overexpressed GPCRs by RNAi indicated that suppression the expression of AgoGPCR48 and AgoGPCR53 significantly increased the susceptibility of A. gossypii to sulfoxaflor, suggesting that these GPCR genes may be associated with sulfoxaflor resistance in A. gossypii. Our results imply that the overexpression of GPCR genes contribute to the sulfoxaflor resistance development in A. gossypii and provide useful targets for developing novel insecticides to manage this pest.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Gossypium , Receptores Acoplados a Proteínas G/metabolismo
8.
Toxics ; 10(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35736917

RESUMO

Neonicotinoid insecticides affect the physiology or behavior of insects, posing risks to non-target organisms. In this study, the effects of sublethal doses of two neonicotinoid insecticides, acetamiprid and dinotefuran, against Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) were determined and compared. The results showed that acetamiprid and dinotefuran at LD10 (8.18 ng a.i. per insect and 9.36 ng a.i. per insect, respectively) and LD30 (16.84 ng a.i. per insect and 15.01 ng a.i. per insect, respectively) significantly prolonged the larval stages and pupal stages (except acetamiprid LD10), compared to control. In addition, acetamiprid and dinotefuran at LD30 significantly prolonged the adult preoviposition period (APOP) and total preoviposition period (TPOP). In contrast, the two insecticides at LD10 and LD30 had no significant effect on the longevity, fecundity, reproductive days, preadult survival rate (%), intrinsic rate of increase (r), net reproductive rate (R0), and finite rate of increase (λ). These results provide a theoretical basis for the rational use of these two insecticides and the utilization and protection of C. pallens.

9.
Small ; 18(18): e2200782, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35373474

RESUMO

Exploring novel electrode composites and their unique interface physics plays a significant role in tuning electrochemical properties for boosting the performance of sodium-ion batteries (SIBs). Herein, mixed-dimensional G/NiS2 -MoS2 heterostructures are synthesized in a low-cost meteorological vulcanization process. The stable graphene supporting layer and nanowire heterostructure guarantee an outstanding structural stability to tolerate certain volume changes during the charge/discharge process. The rational construction of NiS2 -MoS2 heterostructures induces abundant interfaces and unique ion diffusion channels, which render fast electrochemical kinetics and superior reversible capacities for high-performance SIBs. Interestingly, theoretical studies reveal that the anisotropic diffusion barriers create unidirectional "high-speed" channels, which can lead to ordered and fast Na+ insertion/extraction in designed heterostructures. G/NiS2 -MoS2 anode exhibits a high capacity of 509.6 mA h g-1 after 500 cycles and a coulombic efficiency >99% at 0.5 A g-1 , which also displays excellent cycling performance with the capacity of 383.8 mA h g-1 after the 1000 cycles at 5 A g-1 . Furthermore, full cells are constructed exhibiting a high capacity of 70 mA h g-1 at 0.1 A g-1 after 150 cycles and applied to light LEDs. This study provides a feasible strategy of constructing mixed-dimensional heterostructures for SIBs with excellent performance and a long service lifetime.

10.
J Agric Food Chem ; 69(50): 15097-15107, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34902254

RESUMO

In aphids, hormesis and symbiotic bacteria are the drivers for the development of pesticide resistance. However, the related mechanism remains unclear. Here, we evaluated the sublethal and transgenerational effects of the extensively used pyrethroid pesticide deltamethrin (DMT) on the population dynamics in Aphis gossypii and tested its influence on symbiotic bacterial communities. The leaf-dip bioassay revealed that DMT was highly toxic to A. gossypii, and at a low lethal concentration of DMT, the intrinsic (r) and finite rates of increase (λ) of the initially exposed aphids (G0) significantly decreased. Intriguingly, the r, λ, and net reproductive rate (R0) of G1 and G2 significantly increased, but the r and λ decreased in G3. The adult and total preoviposition period increased in G3 but decreased in G4. Additionally, the diversity of the bacterial community decreased, while the abundance values of Buchnera, Pseudomonadaceae, and Burkholderiaceae increased after 24 h of exposure to LC30 DMT in G0 aphids, and the latter two decreased in G1 but increased in G2. In summary, sublethal DMT has intergenerational hormesis effect on cotton aphids in G1-G2 and remarkably altered their symbiotic bacterial community and abundance. These results broaden our understanding of the relationship of hormesis and symbiotic bacteria in aphids under insecticide exposure.


Assuntos
Afídeos , Inseticidas , Piretrinas , Animais , Bactérias/genética , Inseticidas/toxicidade , Nitrilas , Piretrinas/toxicidade , Reprodução
11.
Pest Manag Sci ; 77(7): 3406-3418, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33786972

RESUMO

BACKGROUND: Aphis gossypii, a polyphagous and recurrent pest induced by pesticides, causes tremendous loss crop yields each year. Previous studies on the mechanism of pesticide-induced sublethal effects mainly focus on the gene level. The symbiotic bacteria are also important participants of this mechanism, but their roles in hormesis are still unclear. RESULTS: In this study, life table parameters and 16S rRNA sequencing were applied to evaluate the sublethal and transgenerational effects of sulfoxaflor on adult A. gossypii after 24-h LC20 (6.96 mg L-1 ) concentration exposure. The results indicated that the LC20 of sulfoxaflor significantly reduced the finite rate of increase (λ) and net reproductive rate (R0 ) of parent generation (G0), and significantly increased mean generation time (T) of G1 and G2, but not of G3 and G4. Both reproductive period and fecundity of G1 and G2 were significantly higher than those of the control. Furthermore, our sequencing data revealed that more than 95% bacterial communities were dominated by the phylum Proteobacteria, in which the maximum proportion genus was the primary symbiont Buchnera and the facultative symbiont Arsenophonus. Compared to those of the control, the abundance and composition of symbiotic bacteria of A. gossypii for three successive generations (G0-G2) were changed after G0 A. gossypii was exposed to sulfoxaflor: the diversity of the bacterial community was decreased, but the abundance of Buchnera was increased (G0), while the abundance of Arsenophonus was decreased. Contrary to G0, G1 and G2 cotton aphid exhibited an increased relative abundance of Arsenophonus in the sublethal treatment group. CONCLUSION: Taken together, our results provide an insight into the interactions among pesticide resistance, aphids, and symbionts, which will eventually help to better manage the resurgence of A. gossypii. © 2021 Society of Chemical Industry.


Assuntos
Afídeos , Animais , Afídeos/genética , Humanos , Tábuas de Vida , Piridinas , RNA Ribossômico 16S/genética , Compostos de Enxofre/toxicidade
12.
Pest Manag Sci ; 77(2): 817-823, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32926583

RESUMO

BACKGROUND: The plant bug Lygus pratensis Linnaeus is a widely distributed polyphagous herbivore that increasingly attains outbreak population levels on cotton in northwestern China. Although the sex pheromone of L. pratensis from the United Kingdom has been identified as hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal, at a ratio of 100:25:24, this volatile blend does not prove attractive to Chinese field populations. RESULTS: In this study, we identified and optimized the sex pheromone of L. pratensis strains from northwestern China. In coupled gas chromatography and electro-antennogram detection (GC-EAD) assays, three compounds within whole-body extracts of virgin L. pratensis females elicited antennal responses: hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal. In field trials, a 20:1:30 ratio blend was the most attractive to L. pratensis males. CONCLUSION: Traps baited with this synthetic pheromone blend present considerable advantages over traditional sweep-net sampling for L. pratensis population monitoring. It can readily be incorporated into monitoring schemes and integrated pest management packages.


Assuntos
Hemípteros , Heterópteros , Atrativos Sexuais , Animais , China , Feminino , Masculino , Feromônios , Atrativos Sexuais/farmacologia , Reino Unido
13.
Materials (Basel) ; 13(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260106

RESUMO

The physical composition and stress state of soil-rock mixture (SRM) materials have a crucial influence on their mechanical properties, and play a vital role in improving the performance of subgrade. To reveal the resilient behavior and mesostructure evolution of SRM materials, triaxial tests and discrete element method (DEM) numerical analysis have been carried out. In the triaxial test section, the mechanical response of SRM materials was investigated by preparing samples under different stress states and physical states and conducting triaxial tests on samples. Simultaneously, a new irregular particle modeling method was developed and applied to the discrete element modeling process to analyze the mesostructure evolution of SRM materials under cycling loading. First, a cyclic triaxial test of SRM material is performed on the SRM material, and the effects of bulk stress, octahedral shear stress and rock content on the resilient modulus of the SRM material are analyzed. It is revealed that the resilient modulus increases with increasing bulk stress and rock content, and decreases with increasing octahedral shear stress. Based on a new resilient modulus prediction model, the relationships among the rock content, stress state and resilient modulus are established. Then, based on an improved DEM modeling method, a discrete element model of the SRM is established, and the influence of rock content on coordination number and mesostructure evolution of the SRM is analyzed. The results show that in SRM materials, the increase of crushed rock changes the mesostructure of the SRM material. With the increase of rock content, the internal contact force changes from "between soil and rock" to "between rocks", and the skeleton formed in the rocks gradually develops overall stiffness. Under the condition of low stress, the anisotropy of the SRM material is mainly caused by the shape and grade distribution of crushed rock. The induced anisotropy caused by the change of stress state has little effect on its mechanical behavior, which may lead to the greater dispersion of multiple SRM test results.

14.
RSC Adv ; 10(18): 10816-10825, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35492902

RESUMO

The Janus MoSSe sheet has aroused significant attention due to its band edge position and intrinsic dipole moment, making it a strong candidate for water splitting photocatalysis. However, weak water adsorption seriously prevents its further application. Here, first-principles calculations are used to explore the effect of intrinsic defects on water adsorption and conversion at the Janus MoSSe sheet. First-principles calculation results clearly show that intrinsic defects (Svac, Moanti, and Moint) can effectively alter the interaction between water and the MoSSe sheet. Except for Svac defects, the adsorption energy of water at Moanti or Moint defects can be significantly increased by -1.0 to -1.5 eV with respect to the weak water adsorption on a pristine MoSSe sheet of about -0.24 eV. More importantly, the energy barrier for water conversion can be dramatically lowered by 48% to 0.7 eV at Moanti or Moint defects, together with a more stable final state. Such significant enhancement of the adsorption energy is attributed to the red shift of water energy levels, resulting from the strong interaction between O2p orbitals and Mo3d orbitals. It is shown that the intrinsic defects have the potential to change the photocatalytic reactivity of the surface, and thus this may serve as an important way to design photocatalysts for water splitting.

15.
PLoS One ; 11(11): e0166771, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27870914

RESUMO

Top-down force is referred to arthropod pest management delivered by the organisms from higher trophic levels. In the context of prevalent adoption of transgenic Bt crops that produce insecticidal Cry proteins derived from Bacillus thuringiensis (Bt), it still remains elusive whether the top-down forces are affected by the insect-resistant traits that introduced into the Bt crops. We explored how Bt cotton affect the strength of top-down forces via arthropod natural enemies in regulating a non-target pest species, the cotton aphid Aphis gossypii Glover, using a comparative approach (i.e. Bt cotton vs. conventional cotton) under field conditions. To determine top-down forces, we manipulated predation/parasitism exposure of the aphid to their natural enemies using exclusion cages. We found that the aphid population growth was strongly suppressed by the dominant natural enemies including Coccinellids, spiders and Aphidiines parasitoids. Coccinellids, spiders and the assemblage of other arthropod natural enemies (mainly lacewings and Hemipteran bugs) are similarly abundant in both plots, but with the parasitoid mummies less abundant in Bt cotton plots compared to the conventional cotton plots. However, the lower abundance of parasitoids in Bt cotton plots alone did not translate into differential top-down control on A. gossypii populations compared to conventional ones. Overall, the top-down forces were equally strong in both plots. We conclude that transgenic Bt cotton does not disrupt the top-down forces regulating the cotton aphid in central China.


Assuntos
Afídeos/fisiologia , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Gossypium/genética , Proteínas Hemolisinas/farmacologia , Animais , Afídeos/efeitos dos fármacos , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Gossypium/crescimento & desenvolvimento , Gossypium/parasitologia , Proteínas Hemolisinas/genética , Controle de Insetos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Dinâmica Populacional , Crescimento Demográfico , Comportamento Predatório
16.
Sensors (Basel) ; 16(6)2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27294935

RESUMO

This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR) sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade's soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1) the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2) the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3) the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade's temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...