Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 61(2): 1044-1060, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37676391

RESUMO

Ferroptosis is a distinct peroxidation-driven form of cell death tightly involved in subarachnoid hemorrhage (SAH). This study delved into the mechanism of deferoxamine (DFO, an iron chelator) in SAH-induced ferroptosis and inflammation. SAH mouse models were established by endovascular perforation method and injected intraperitoneally with DFO, or intraventricularly injected with the Nrf2 pathway inhibitor ML385 before SAH, followed by detection of neurological function, blood-brain barrier (BBB) permeability, and brain water content. Apoptotic level of hippocampal neurons, symbolic changes of ferroptosis, and levels of pro-inflammatory cytokines were assessed using TUNEL staining, Western blotting, colorimetry, and ELISA. The localization and expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) were detected. HT22 cells were exposed to Hemin as in vitro SAH models and treated with FIN56 to induce ferroptosis, followed by evaluation of the effects of DFO on FIN56-treated HT22 cells. The regulation of Nrf2 in thioredoxin reductase 1 (TXNRD1) was analyzed by co-immunoprecipitation and Western blotting. Moreover, HT22 cells were treated with DFO and ML385 to identify the role of DFO in the Nrf2/TXNRD1 axis. DFO extenuated brain injury, and ferroptosis and inflammation in hippocampal neurons of SAH mice. Nrf2 localized at the CA1 region of hippocampal neurons, and DFO stimulated nuclear translocation of Nrf2 protein in hippocampal neurons of SAH mice. Additionally, DFO inhibited ferroptosis and inflammatory responses in FIN56-induced HT22 cells. Nrf2 positively regulated TXNRD1 protein expression. Indeed, DFO alleviated FIN56-induced ferroptosis and inflammation via activation of the Nrf2/TXNRD1 axis. DFO alleviated neurological deficits, BBB disruption, brain edema, and brain injury in mice after SAH by inhibiting hippocampal neuron ferroptosis via the Nrf2/TXNRD1 axis. DFO ameliorates SAH-induced ferroptosis and inflammatory responses in hippocampal neurons by activating the Nrf2/TXNRD1 axis.


Assuntos
Lesões Encefálicas , Ferroptose , Hemorragia Subaracnóidea , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Desferroxamina , Tiorredoxina Redutase 1/metabolismo , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Inflamação/tratamento farmacológico
2.
Small ; : e2308549, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054764

RESUMO

Boosting the hydrogen evolution reaction (HER) activity of α-MoB2 at large current densities and in pH-universal medium is significant for efficient hydrogen production. In this work, Co2 B/MoB2 heterostructured nanoclusters are prepared by molten-salt electrolysis (MSE) and then used as a HER catalyst. The composition, structure, and morphology of Co2 B/MoB2 can be modulated by altering the stoichiometries of raw materials and synthesis temperatures. Impressively, the obtained Co2 B/MoB2 at optimized conditions exhibits a low overpotential of 297 and 304 mV at 500 mA cm-2 in 0.5 m H2 SO4 and 1 m KOH, respectively. Moreover, the Co2 B/MoB2 catalyst possesses a long-term catalytic stability of over 190 h in both acidic and alkaline medium. The excellent HER performance is due to the modified electronic structure at the Co2 B/MoB2 heterointerface where electrons are accumulated at the Mo sites to strengthen the H adsorption. Density functional theory (DFT) calculations reveal that the formation of the Co2 B/MoB2 heterointerface decreases the H adsorption and H2 O dissociation free energies, contributing to the boosted HER intrinsic catalytic activity of Co2 B/MoB2 . Overall, this work provides an experimental and theoretical paradigm for the design of efficient pH-universal boride heterostructure electrocatalysts.

3.
Langmuir ; 39(50): 18198-18207, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38063463

RESUMO

This study introduces an anisotropic interfacial potential that provides an accurate description of the van der Waals (vdW) interactions between water and hexagonal boron nitride (h-BN) at their interface. Benchmarked against the strongly constrained and appropriately normed functional, the developed force field demonstrates remarkable consistency with reference data sets, including binding energy curves and sliding potential energy surfaces for various configurations involving a water molecule adsorbed atop the h-BN surface. These findings highlight the significant improvement achieved by the developed force field in empirically describing the anisotropic vdW interactions of the water/h-BN heterointerfaces. Utilizing this anisotropic force field, molecular dynamics simulations demonstrate that atomically flat, pristine h-BN exhibits inherent hydrophobicity. However, when atomic-step surface roughness is introduced, the wettability of h-BN undergoes a significant change, leading to a hydrophilic nature. The calculated water contact angle (WCA) for the roughened h-BN surface is approximately 64°, which closely aligns with experimental WCA values ranging from 52° to 67°. These findings indicate the high probability of the presence of atomic steps on the surfaces of the experimental h-BN samples, emphasizing the need for further experimental verification. The development of the anisotropic interfacial force field for accurately describing interactions at the water/h-BN heterointerfaces is a significant advancement in accurately simulating the wettability of two-dimensional (2D) materials, offering a reliable tool for studying the dynamic and transport properties of water at these interfaces, with implications for materials science and nanotechnology.

4.
J Neurol Surg B Skull Base ; 84(6): 616-628, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37854538

RESUMO

Objective This study aimed to establish a novel grading system, based on the craniovertebral junction compression severity index (CVJCSI) for multidirectional quantification at the foramen magnum plane for Chiari malformation type I (CMI). Methods The CVJCSI grading system was established to stratify patients based on the ventral (modified clivoaxial angle < 138°), dorsal (tonsil herniation), and central (brainstem herniation) CVJ (craniovertebral junction) compression, the CVJCSI grading system was established to stratify patients. The optimal surgical method for each grade was recommended by intragroup comparisons regarding the efficacy of the three operations. Finally, according to the CVJCSI grading system, a prospective validation trial was performed and surgically treated for internal validation. Results Based on the retrospective study ( n = 310), the CVJCSI included six grades: I: syrinx alone without compression; II: dorsal compression; III: dorsal and central compression; IV: ventral compression; V: dorsal and ventral compression; and VI: ventral, dorsal, and central compression. Among all available variables, only the CVJCSI and surgical methods significantly affected the CCOS. The CCOS scores, overall and for each CVJCSI grade, increased in the prospective cohort ( n = 42) compared with that in the retrospective analysis. Conclusions The CVJCSI can be used to stratify CMI patients. The higher the CVJCSI grade, the more severe the CVJ compression and the worse posterior fossa deformity. Meanwhile, the CVJCSI was negatively correlated with the CCOS. The lower the CVJCSI grade, the better the response to surgery, and the less-invasive surgical procedures were warranted. Finally, the prospective cohort study validated the proposed CVJCSI-based surgical protocols.

5.
Zhonghua Nan Ke Xue ; 25(10): 867-873, 2019 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-32233216

RESUMO

OBJECTIVE: To study the expression of the Ces5a gene in the development of the rat testis. METHODS: Using RT-PCR, Western blot, immunohistochemistry and HE staining, we determined the mRNA transcription level, protein expression and localization of the Ces5a gene in the testes of three litters of rats at different postnatal (PN) days. RESULTS: The expression of Ces5a mRNA was found in the testis tissue of the rats at 2-65 PN days, low at 2-12 days, decreased to the lowest level at 14-16 days (P < 0.05), but significantly increased at 20-35 days (P < 0.05), and elevated to the highest level at 40-65 days (P < 0.05). The expression of the Ces5a protein was also observed in the testis tissue of the rats at 2-65 PN, low at 2-12 days, with no significant change at 14-16 days (P > 0.05), but markedly increased at 20-35 days (P < 0.05), and again with no significant change at 40-65 days (P > 0.05). The Ces5a protein was expressed in the spermatogonia, spermatocytes and round sperm cells. CONCLUSIONS: The Ces5a gene may be involved in the proliferation and meiosis of rat spermatogonia and play a special role in round spermatogenesis and sperm deformation.


Assuntos
Carboxilesterase/genética , Espermatogênese , Testículo/enzimologia , Animais , Masculino , Ratos , Espermatócitos , Espermatogônias , Espermatozoides , Testículo/crescimento & desenvolvimento
6.
J Phys Condens Matter ; 30(13): 135701, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29443000

RESUMO

Recently, there has been a surge of interest in the research of two-dimensional (2D) phosphides due to their unique physical properties and wide applications. Transition metal phosphides 2H-M 2Ps (Mo2P, W2P, Nb2P and Ta2P) show considerable catalytic activity and energy storage potential. However, the electronic structure and mechanical properties of 2D 2H-M 2Ps are still unrevealed. Here, first-principles calculations are employed to investigate the lattice dynamics, elasticity and thermodynamic properties of 2H-M 2Ps. Results show that M 2Ps with lower stiffness exhibit remarkable lateral deformation under unidirectional loads. Due to the largest average Grüneisen parameter, single-layer Nb2P has the strongest anharmonic vibrations, resulting in the highest thermal expansion coefficient. The lattice thermal conductivities of Ta2P, W2P and Nb2P contradict classical theory, which would predict a smaller thermal conductivity due to the much heavier atom mass. Moreover, the calculations also demonstrate that the thermal conductivity of Ta2P is the highest as well as the lowest thermal expansion, owing to its weak anharmonic phonon scattering and the lowest average Grüneisen parameter. The insight provided by this study may be useful for future experimental and theoretical studies concerning 2D transition metal phosphide materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...