Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 18(12): 1506-1514, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34857936

RESUMO

Mapping the cell phylogeny of a complex multicellular organism relies on somatic mutations accumulated from zygote to adult. Available cell barcoding methods can record about three mutations per barcode, enabling only low-resolution mapping of the cell phylogeny of complex organisms. Here we developed SMALT, a substitution mutation-aided lineage-tracing system that outperforms the available cell barcoding methods in mapping cell phylogeny. We applied SMALT to Drosophila melanogaster and obtained on average more than 20 mutations on a three-kilobase-pair barcoding sequence in early-adult cells. Using the barcoding mutations, we obtained high-quality cell phylogenetic trees, each comprising several thousand internal nodes with 84-93% median bootstrap support. The obtained cell phylogenies enabled a population genetic analysis that estimates the longitudinal dynamics of the number of actively dividing parental cells (Np) in each organ through development. The Np dynamics revealed the trajectory of cell births and provided insight into the balance of symmetric and asymmetric cell division.


Assuntos
Biologia Computacional/métodos , Drosophila melanogaster/metabolismo , Microscopia/métodos , Mutação , Alelos , Animais , Animais Geneticamente Modificados , Divisão Celular , Linhagem da Célula , Replicação do DNA , Drosophila melanogaster/embriologia , Endonucleases/metabolismo , Funções Verossimilhança , Masculino , Mutagênese , Fenótipo , Filogenia , Saccharomyces cerevisiae/genética , Análise de Célula Única
2.
J Genet Genomics ; 48(3): 219-224, 2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-34001433

RESUMO

Conventional coalescent inferences of population history make the critical assumption that the population under examination is panmictic. However, most populations are structured. This complicates the prevailing coalescent analyses and sometimes leads to inaccurate estimates. To develop a coalescent method unhampered by population structure, we perform two analyses. First, we demonstrate that the coalescent probability of two randomly sampled alleles from the immediate preceding generation (one generation back) is independent of population structure. Second, motivated by this finding, we propose a new coalescent method: i-coalescent analysis. The i-coalescent analysis computes the instantaneous coalescent rate by using a phylogenetic tree of sampled alleles. Using simulated data, we broadly demonstrate the capability of i-coalescent analysis to accurately reconstruct population size dynamics of highly structured populations, although we find this method often requires larger sample sizes for structured populations than for panmictic populations. Overall, our results indicate i-coalescent analysis to be a useful tool, especially for the inference of population histories with intractable structure such as the developmental history of cell populations in the organs of complex organisms.


Assuntos
Filogenia , Densidade Demográfica , Modelos Genéticos , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...