Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(10): 1520-1534, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723297

RESUMO

Human spermatogenesis is a highly ordered process; however, the roles of DNA methylation and chromatin accessibility in this process remain largely unknown. Here by simultaneously investigating the chromatin accessibility, DNA methylome and transcriptome landscapes using the modified single-cell chromatin overall omic-scale landscape sequencing approach, we revealed that the transcriptional changes throughout human spermatogenesis were correlated with chromatin accessibility changes. In particular, we identified a set of transcription factors and cis elements with potential functions. A round of DNA demethylation was uncovered upon meiosis initiation in human spermatogenesis, which was associated with male meiotic recombination and conserved between human and mouse. Aberrant DNA hypermethylation could be detected in leptotene spermatocytes of certain nonobstructive azoospermia patients. Functionally, the intervention of DNA demethylation affected male meiotic recombination and fertility. Our work provides multi-omics landscapes of human spermatogenesis at single-cell resolution and offers insights into the association between DNA demethylation and male meiotic recombination.


Assuntos
Desmetilação do DNA , Multiômica , Humanos , Masculino , Animais , Camundongos , Espermatogênese/genética , Meiose/genética , Cromatina/genética
2.
Stem Cell Reports ; 18(4): 969-984, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37044069

RESUMO

The spermatogonial stem cell (SSC) niche is critical for SSC maintenance and subsequent spermatogenesis. Numerous reproductive hazards impair the SSC niche, thereby resulting in aberrant SSC self-renewal and male infertility. However, promising agents targeting the impaired SSC niche to promote SSC self-renewal are still limited. Here, we screen out and assess the effects of Lovastatin on the self-renewal of mouse SSCs (mSSCs). Mechanistically, Lovastatin promotes the self-renewal of mSSCs and inhibits its inflammation and apoptosis through the regulation of isoprenoid intermediates. Remarkably, treatment by Lovastatin could promote the proliferation of undifferentiated spermatogonia in the male gonadotoxicity model generated by busulfan injection. Of note, we demonstrate that Lovastatin could enhance the proliferation of primate undifferentiated spermatogonia. Collectively, our findings uncover that lovastatin could promote the self-renewal of both murine and primate SSCs and have implications for the treatment of certain types of male infertility using small compounds.


Assuntos
Infertilidade Masculina , Lovastatina , Camundongos , Animais , Masculino , Humanos , Lovastatina/farmacologia , Lovastatina/metabolismo , Células-Tronco/metabolismo , Proliferação de Células , Espermatogônias/metabolismo , Espermatogênese , Primatas , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/metabolismo
3.
Nat Commun ; 13(1): 2756, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589713

RESUMO

Multiple pluripotent states have been described in mouse and human stem cells. Here, we apply single-cell RNA-seq to a newly established BMP4 induced mouse primed to naïve transition (BiPNT) system and show that the reset is not a direct reversal of cell fate but goes through a primordial germ cell-like cells (PGCLCs) state. We first show that epiblast stem cells bifurcate into c-Kit+ naïve and c-Kit- trophoblast-like cells, among which, the naïve branch undergoes further transition through a PGCLCs intermediate capable of spermatogenesis in vivo. Mechanistically, we show that DOT1L inhibition permits the transition from primed pluripotency to PGCLCs in part by facilitating the loss of H3K79me2 from Gata3/6. In addition, Prdm1/Blimp1 is required for PGCLCs and naïve cells, while Gata2 inhibits PGC-like state by promoting trophoblast-like fate. Our work not only reveals an alternative route for primed to naïve transition, but also gains insight into germ cell development.


Assuntos
Células Germinativas , Camadas Germinativas , Animais , Proteína Morfogenética Óssea 4 , Diferenciação Celular , Masculino , Camundongos , Células-Tronco , Trofoblastos
4.
Nat Commun ; 12(1): 6839, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824237

RESUMO

Mammalian male germ cell development is a stepwise cell-fate transition process; however, the full-term developmental profile of male germ cells remains undefined. Here, by interrogating the high-precision transcriptome atlas of 11,598 cells covering 28 critical time-points, we demonstrate that cell-fate transition from mitotic to post-mitotic primordial germ cells is accompanied by transcriptome-scale reconfiguration and a transitional cell state. Notch signaling pathway is essential for initiating mitotic arrest and the maintenance of male germ cells' identities. Ablation of HELQ induces developmental arrest and abnormal transcriptome reprogramming of male germ cells, indicating the importance of cell cycle regulation for proper cell-fate transition. Finally, systematic human-mouse comparison reveals potential regulators whose deficiency contributed to human male infertility via mitotic arrest regulation. Collectively, our study provides an accurate and comprehensive transcriptome atlas of the male germline cycle and allows for an in-depth understanding of the cell-fate transition and determination underlying male germ cell development.


Assuntos
Espermatozoides/citologia , Espermatozoides/crescimento & desenvolvimento , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Meiose/genética , Camundongos , Mitose/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Espermatogênese/genética , Espermatozoides/metabolismo , Transcriptoma
5.
Stem Cell Reports ; 16(5): 1245-1261, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33930315

RESUMO

In vitro induction of human primordial germ cell-like cells (hPGCLCs) provides an ideal platform to recapitulate hPGC development. However, the detailed molecular mechanisms regulating the induction of hPGCLCs remain largely uncharacterized. Here, we profiled the chromatin accessibility and transcriptome dynamics throughout the process of hPGCLC induction. Genetic ablation of SOX15 indicated the crucial roles of SOX15 in the maintenance of hPGCLCs. Mechanistically, SOX15 exerted its roles via suppressing somatic gene expression and sustaining latent pluripotency. Notably, ETV5, a downstream regulator of SOX15, was also uncovered to be essential for hPGCLC maintenance. Finally, a stepwise switch of OCT4/SOX2, OCT4/SOX17, and OCT4/SOX15 binding motifs were found to be enriched in closed-to-open regions of human embryonic stem cells, and early- and late-stage hPGCLCs, respectively. Collectively, our data characterized the chromatin accessibility and transcriptome landscapes throughout hPGCLC induction and defined the SOX15-mediated regulatory networks underlying this process.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transcrição Gênica , Sequência de Bases , Linhagem da Célula/genética , Células Germinativas/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição SOX/metabolismo , Fator de Transcrição AP-2/metabolismo
6.
Int J Biol Sci ; 17(2): 527-538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613110

RESUMO

Germline specification is a fundamental step for human reproduction and this biological phenomenon possesses technical challenges to study in vivo as it occurs immediately after blastocyst implantation. The establishment of in vitro human primordial germ cell-like cells (hPGCLCs) induction system allows sophisticated characterization of human primordial germ cells (hPGCs) development. However, the underlying molecular mechanisms of hPGCLC specification are not fully elucidated. Here, we observed particularly high expression of the histone demethylase KDM2B in male fetal germ cells (FGCs) but not in male somatic cells. Besides, KDM2B shared similar expression pattern with hPGC marker genes in hPGCLCs, suggesting an important role of KDM2B in germ cell development. Although deletion of KDM2B had no significant effects on human embryonic stem cell (hESC)'s pluripotency, loss of KDM2B dramatically impaired hPGCLCs differentiation whereas ectopically expressed KDM2B could efficiently rescue such defect, indicating this defect was due to KDM2B's loss in hPGCLC specification. Mechanistically, as revealed by the transcriptional profiling, KDM2B suppressed the expression of somatic genes thus inhibited somatic differentiation during hPGCLC specification. These data collectively indicate that KDM2B is an indispensable epigenetic regulator for hPGCLC specification, shedding lights on how epigenetic regulations orchestrate transcriptional events in hPGC development for future investigation.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula , Proteínas F-Box/fisiologia , Células Germinativas/citologia , Histona Desmetilases com o Domínio Jumonji/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/citologia , Proteínas F-Box/genética , Técnicas de Silenciamento de Genes , Humanos , Histona Desmetilases com o Domínio Jumonji/genética
7.
PeerJ ; 6: e6143, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30643676

RESUMO

BACKGROUND: The mechanisms underlying human germ cell development and infertility remain largely unknown due to bioethical issues and the shortage of experimental materials. Therefore, an effective in vitro induction system of human primordial germ-like cells (hPGCLCs) from human pluripotent stem cells (hPSC) is in high demand. The current strategies used for the generation of hPGCLCs are not only costly but also difficult to perform at a large scale, thereby posing barriers to further research. In this study, we attempted to solve these problems by providing a new 3D culture system for hPGCLC differentiation. METHODS: The efficiency and relative yield of a methylcellulose (MC)-based 3D hPGCLC induction system were first compared with that of a conventional U96 system. Then, we examined the gene expression of germ cell marker genes and the key epigenetic modifications of the EpCAM-/INTEGRINα6-high cells from the 3D MC induction system and the U96 system via quantitative PCR and immunofluorescence. Finally, the reliability of the MC-based 3D hPGCLC induction system was evaluated via the generation of induced pluripotent stem cells (iPSCs) from the testicular cells of one patient with obstructive azoospermia (OA) and followed by the subsequent differentiation of iPSCs into the germ cell lineage. RESULTS: In the present study, we demonstrated that the 3D MC induction system combined with low-cell attachment plates facilitated the generation of hPGCLCs at a large scale. We found that the hPGCLCs generated via the MC system shared similar characteristics to that via the U96 system in terms of the gene expression profiles, germ cell-specific markers, epigenetic modification states and cellular states. In addition, hPGCLCs from iPSCs derived from one OA patient were generated with high efficiency via the present 3D MC induction system. DISCUSSION: The in vitro induction of hPGCLCs from human embryonic stem cells (hESCs)/human induced pluripotent stem cells (hiPSCs) has significant implications in exploring the underlying mechanisms of the origin and specification of hPGCs and the epigenetic programming of the human germ line as well as treating male infertility. Here, we developed a simple and efficient 3D induction system to generate hPGCLCs from hESCs/hiPSCs at a large scale, which facilitated the study of human germ cell development and stem cell-based reproductive medicine.

8.
Sci Bull (Beijing) ; 64(8): 524-533, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659742

RESUMO

Mammalian spermatogenesis is maintained by a rare population of spermatogonial stem cells (SSCs), which are important for male fertility. SSCs remain a subset of undifferentiated spermatogonia, which can be isolated by a combination of surface markers. Specific markers to identify and isolate undifferentiated spermatogonia are lacking. Ussp1, a transcript previously annotated as long noncoding RNA (RIKEN cDNA 4933427D06, Gene ID: 232217), virtually encodes a membrane protein, USSP1, in a highly testis-specific manner in mouse. We demonstrate its expression on the membrane of undifferentiated spermatogonia by a homemade polyclonal rabbit antibody against the protein. In vivo, USSP1+ clusters consist mainly of As, Apr (GFRα1+) and Aal (PLZF+) cells. USSP1+ cells exhibit enrichment of undifferentiated spermatogonia, as shown by increased expression of SSC self-renewal molecular markers and the potential to form SSC clones in vitro and in vivo. However, Ussp1 knockout did not affect the number of SSCs or spermatogenesis in mice. Thy1+ cells from Ussp1 null mice did not show any defect in the SSC colony formation capacity, indicating that USSP1 is not essential for SSC self-renewal. Our data demonstrate that Ussp1 is specifically expressed in undifferentiated murine spermatogonia, indicating the potential to sort undifferentiated spermatogonia with USSP1 antibodies. Ussp1 might be a good maker for SSC enrichment in neonatal mice.

9.
Cell Stem Cell ; 23(4): 599-614.e4, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30174296

RESUMO

Spermatogenesis generates mature male gametes and is critical for the proper transmission of genetic information between generations. However, the developmental landscapes of human spermatogenesis remain unknown. Here, we performed single-cell RNA sequencing (scRNA-seq) analysis for 2,854 testicular cells from donors with normal spermatogenesis and 174 testicular cells from one nonobstructive azoospermia (NOA) donor. A hierarchical model was established, which was characterized by the sequential and stepwise development of three spermatogonia subtypes, seven spermatocyte subtypes, and four spermatid subtypes. Further analysis identified several stage-specific marker genes of human germ cells, such as HMGA1, PIWIL4, TEX29, SCML1, and CCDC112. Moreover, we identified altered gene expression patterns in the testicular somatic cells of one NOA patient via scRNA-seq analysis, paving the way for further diagnosis of male infertility. Our work allows for the reconstruction of transcriptional programs inherent to sequential cell fate transition during human spermatogenesis and has implications for deciphering male-related reproductive disorders.


Assuntos
Linhagem da Célula , Análise de Sequência de RNA , Análise de Célula Única , Espermatogênese/genética , Espermatozoides/citologia , Espermatozoides/metabolismo , Células Cultivadas , Biologia Computacional , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...