Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13853, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879578

RESUMO

To elucidate the distribution law of the multiphase coupling slag discharge flow field in gas-lift reverse circulation during drilling shaft sinking, a numerical analysis model of gas-liquid-solid multiphase coupling slag discharge was established by CFD-DEM (Coupling of computational fluid dynamics and discrete element method) method, taking the drilling of North Wind well in Taohutu Coal Mine as an example. This model presented the distribution of the multiphase flow field in the slag discharge pipe and at the bottom hole, and was validated through experimentation and theoretical analysis. Finally, the impact of factors, including bit rotation speed, gas injection rate, air duct submergence ratio, and mud viscosity on the slag discharge flow field was clarified. The results indicated that the migration of rock slag at the bottom of the well was characterized by "slip, convergence, suspension, adsorption, and lifting". The slag flow in the discharge pipe exhibited the states of "high density, low flow rate" and "low density, high flow rate", respectively. The multiphase fluid flow patterns in the well bottom and slag discharge pipe were horizontal and axial flows, respectively. The model test of the gas lift reversed circulation slag discharge and the theoretical model of the bottom hole fluid velocity distribution confirmed the accuracy of the multiphase coupling slag discharge flow field distribution model. The rotation speed of the drill bit had the most significant impact on the bottom hole flow field. Increasing the rotation speed of the drill bit can significantly enhance the tangential velocity of the bottom hole fluid, increase the pressure difference between the bottom hole and annular mud column, and improve the adsorption capacity of the slag suction port. These findings can provide valuable insights for gas lift reverse circulation well washing in western drilling shaft sinking.

2.
Materials (Basel) ; 15(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36363355

RESUMO

In engineering, loose sandy (gravelly) strata are often filled with cement-based grout to form a mixed material with a certain strength and impermeability, so as to improve the mechanical properties of sandy (gravelly) strata. The tortuosity effect of sandy (gravelly) strata and the time-varying viscosity of slurry play a key role in penetration grouting projects. In order to better understand the influence of the above factors on the penetration and diffusion mechanism of power-law slurry, based on the capillary laminar flow model, this research obtained the seepage motion equation of power-law slurry, the time-varying constitutive equations of tortuosity and power-law fluid viscosity were introduced, and the spherical diffusion equation of penetration grouting considering both the tortuosity of porous media and time-varying slurry viscosity was established, which had already been verified by existing experiments. In addition, the time-varying factors of grouting pressure, the physical parameters of the injected soil layer, and slurry viscosity on penetration grouting diffusion law and the influencing factors were analyzed. The results show that considering the tortuosity of sandy (gravelly) strata and the time-varying of slurry viscosity at the same time, the error is smaller than the existing theoretical error, only 13~19%. The diffusion range of penetration grouting in the sandy (gravelly) strata is controlled by the tortuosity of sandy (gravelly) strata, the water-cement ratio of slurry, and grouting pressure. The tortuosity of sandy (gravelly) strata is inversely proportional to the diffusion radius of the slurry, and the water-cement ratio of slurry and grouting pressure are positively correlated with the diffusion radius. In sandy (gravelly) strata with a smaller particle size, the tortuosity effect of porous media dominates the slurry pressure attenuation. When the particle size is larger, the primary controlling factor of slurry pressure attenuation is the tortuosity effect of porous media in the initial stage and the time-varying viscosity of slurry in the later stage. The research results are of great significance to guide the penetration grouting of sandy (gravelly) strata.

3.
Materials (Basel) ; 15(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079497

RESUMO

Affected by fracture distribution, sandstone shows different deformation and energy evolution characteristics under cyclic loading and unloading conditions. Therefore, uniaxial cyclic loading tests were conducted on fractured sandstone with different angles. The deformation characteristics and the evolution law of energy indexes with the peak load and crack angles were obtained under cyclic loading. Studies have shown that: The deformation modulus of sandstone first increases and then decreases, and the lateral expansion coefficient is positively correlated with the peak load. Based on the viscoelastic deformation theory, an energy analysis model considering damping energy and damage energy is established. The dissipated energy can be divided into the damping energy consumed to overcome rock viscoelasticity and damage energy causing damage by viscoelastic deformation theory. Based on this model, the relationship between elastic property, damping energy, damage energy and fracture angle is obtained, and the damage energy increases slowly first and then rapidly. The research results provide a reference for predicting the damage and failure of rock.

4.
Sensors (Basel) ; 22(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35808333

RESUMO

The use of fiber Bragg grating (FBG) sensors is proposed to solve the technical problem of poor sensor stability in the long-term safety monitoring of shaft lining structures. The auxiliary shaft of the Zhuxianzhuang coal mine was considered as the engineering background, and a test system implementing FBG sensors was established to monitor the long-term safety of the shaft lining structure. Indoor simulation testing revealed that the coefficient of determination (r2) between the test curves of the FBG sensor and the resistance strain gauge is greater than 0.99 in both the transverse and vertical strains. Therefore, the FBG sensor and resistance strain gauge test values are similar, and the error is small. The early warning value was obtained by calculation, according to the specific engineering geological conditions and shaft lining structure. The monitoring data obtained for the shaft lining at three test levels over more than three years reveal that the measured vertical strain value is less than the warning value, indicating that the shaft lining structure is currently in a safe state. The analysis of the monitoring data reveals that the vertical strain increment caused by the vertical additional force is approximately 0.0752 µÎµ/d. As the mine drainage progresses, the increasing vertical additional force acting on the shaft lining will compromise the safety of the shaft lining structure. Therefore, the monitoring must be enhanced to facilitate decision-making for safe shaft operation.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Monitorização Fisiológica
5.
Materials (Basel) ; 12(23)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810158

RESUMO

To address the cracking and leaking of concrete in frozen shaft linings in deep and thick topsoil layers in coal mines, hybrid-fiber-reinforced concrete (HFRC) was developed. First, the composition of the reference concrete was obtained by investigating high-strength concrete commonly used in shaft linings, and two dosages of polyvinyl alcohol fiber (PVAF) and polypropylene plastic steel fiber (PPSF) were obtained by the mixing test. Then, tests of early cracks of concrete were conducted; results showed that HFRC could almost avoid early cracks, exhibiting an advantage in early crack resistance. Thus, HFRC can play a significant role in improving the durability of frozen shaft linings in complex underground environments. Furthermore, a series of mechanical property tests were carried out. The results showed that the compressive strength of HFRC was similar to that of the reference concrete, but the tensile and flexural strength of HFRC was 42.7% and 35.1% higher than that of the reference concrete, respectively. Finally, an analog simulation model test of shaft linings was conducted. The new type of shaft lining structure containing hybrid fibers (HFs) exhibited plastic deformation characteristics under load, and the maximum hoop strain was -3562 µÎµ. It addressed the problem of high brittleness of frozen shaft lining structures of ordinary high-strength concrete and improved the toughness and crack resistance. HFRC is an ideal material for frozen shaft lining structures in deep and thick topsoil.

6.
Materials (Basel) ; 12(15)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382558

RESUMO

In order to economically and reasonably solve the problem of mineshaft support in complex geological conditions, the mechanical properties of high-performance steel-fiber-reinforced concrete (HPSFRC) and its application in mineshaft lining structures were investigated in this study. Firstly, the mix proportion of HPSFRC for the mineshaft lining structure was obtained through raw material selection and preparation testing. Then, a series of mechanical property tests were conducted. The test results showed that the compressive, flexural, and tensile strengths of HPSFRC were 9%, 71%, and 53% higher than that of ordinary concrete, respectively. The fracture toughness of HPSFRC was 75% higher than that of the ordinary concrete and the fracture energy of HPSFRC was 16 times that of the ordinary concrete. Finally, the model test results of the HPSFRC shaft lining structure showed that the crack resistance, toughness, and bearing capacity of the shaft lining structure had been significantly improved under a non-uniform confining load because of the replacement of ordinary concrete with HPSFRC. HPSFRC was proved to be an ideal material for mineshaft support structures under complex geological conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...