Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822146

RESUMO

BACKGROUND: Recent therapeutic strategies for KRAS-mutated cancers that inhibit the MAPK pathway have attracted considerable attention. The RAF/MEK clamp avutometinib (VS-6766/CH5126766/RO5126766/CKI27) is promising for patients with KRAS-mutated cancers. Although avutometinib monotherapy has shown clinical activity in patients with KRAS-mutated cancers, effective combination strategies will be important to develop. METHODS: Using a phosphorylation kinase array kit, we explored the feedback mechanism of avutometinib in KRAS-mutated NSCLC cells, and investigated the efficacy of combining avutometinib with inhibitors of the feedback signal using in vitro and in vivo experiments. Moreover, we searched for a biomarker for the efficacy of combination therapy through an in vitro study and analysis using the The Cancer Genome Atlas Programme dataset. RESULTS: Focal adhesion kinase (FAK) phosphorylation/activation was increased after avutometinib treatment and synergy between avutometinib and FAK inhibitor, defactinib, was observed in KRAS-mutated NSCLC cells with an epithelial rather than mesenchymal phenotype. Combination therapy with avutometinib and defactinib induced apoptosis with upregulation of Bim in cancer cells with an epithelial phenotype in an in vitro and in vivo study. CONCLUSIONS: These results demonstrate that the epithelial-mesenchymal transition status may be a promising biomarker for the efficacy of combination therapy with avutometinib and defactinib in KRAS-mutated NSCLC.

2.
PLoS One ; 18(11): e0294893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019816

RESUMO

Abnormal spindle-like microcephaly associated (ASPM) is a causative gene of primary autosomal recessive microcephaly. Microcephaly is considered to be a consequence of a small brain, but the associated molecular mechanisms are not fully understood. In this study, we generated brain-specific Aspm knockout mice to evaluate the fetal brain phenotype and observed cortical reduction in the late stage of murine cortical development. It has been reported that the total number of neurons is regulated by the number of neural stem and progenitor cells. In the Aspm knockout mice, no apparent change was shown in the neural progenitor cell proliferation and there was no obvious effect on the number of newly generated neurons in the developing cortex. On the other hand, the knockout mice showed a constant increase in apoptosis in the cerebral cortex from the early through the late stages of cortical development. Furthermore, apoptosis occurred in the neural progenitor cells associated with DNA damage. Overall, these results suggest that apoptosis of the neural progenitor cells is involved in the thinning of the mouse cerebral cortex, due to the loss of the Aspm gene in neocortical development.


Assuntos
Microcefalia , Células-Tronco Neurais , Animais , Camundongos , Córtex Cerebral/metabolismo , Camundongos Knockout , Microcefalia/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo
3.
Genes Cells ; 28(12): 868-880, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837427

RESUMO

Primary cilia on neural stem/progenitor cells (NSPCs) play an important role in determining cell fate, although the regulatory mechanisms involved in the ciliogenesis remain largely unknown. In this study, we analyzed the effect of the leukemia inhibitory factor (LIF) for the primary cilia in immortalized human NSPCs. LIF withdrawal elongated the primary cilia length, whereas the addition of LIF shortened it. Microarray gene expression analysis revealed that differentially expressed genes (DEGs) associated with LIF treatment were related with the multiple cytokine signaling pathways. Among the DEGs, C-C motif chemokine 2 (CCL2) had the highest ranking and its increase in the protein concentration in the NSPCs-conditioned medium after the LIF treatment was confirmed by ELISA. Interestingly, we found that CCL2 was a negative regulator of cilium length, and LIF-induced shortening of primary cilia was antagonized by CCL2-specific antibody, suggesting that LIF could influence cilia length via upregulating CCL2. The shortening effect of LIF and CCL2 on primary cilia was also observed in SH-SY5Y cells. The results of the study suggested that the LIF-CCL2 axis may well be a regulator of NSPCs and its primary cilia length, which could affect multiple cellular processes, including NSPC proliferation and differentiation.


Assuntos
Células-Tronco Neurais , Neuroblastoma , Humanos , Cílios/metabolismo , Transdução de Sinais , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Células-Tronco Neurais/metabolismo , Diferenciação Celular/fisiologia
4.
JTO Clin Res Rep ; 4(6): 100525, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37426308

RESUMO

Introduction: EGFR tyrosine kinase inhibitors are standard therapeutic agents for patients with advanced NSCLC harboring EGFR mutations. Nevertheless, some patients exhibit primary resistance to EGFR tyrosine kinase inhibitors in the first-line treatment setting. AXL, a member of the TYRO3, AXL, and MERTK family of receptor tyrosine kinases, is involved in primary resistance to EGFR tyrosine kinase inhibitors in EGFR-mutated NSCLC. Methods: We investigated spatial tumor heterogeneity using autopsy specimens and a patient-derived cell line from a patient with EGFR-mutated NSCLC having primary resistance to erlotinib plus ramucirumab. Results: Quantitative polymerase chain reaction analysis revealed that AXL mRNA expression differed at each metastatic site. In addition, AXL expression levels were likely to be negatively correlated with the effectiveness of erlotinib plus ramucirumab therapy. Analysis of a patient-derived cell line established from the left pleural effusion before initiation of treatment revealed that the combination of EGFR tyrosine kinase inhibitors and an AXL inhibitor remarkably inhibited cell viability and increased cell apoptosis in comparison with EGFR tyrosine kinase inhibitor monotherapy or combination therapy of these inhibitors with ramucirumab. Conclusions: Our observations suggest that AXL expression may play a critical role in the progression of spatial tumor heterogeneity and primary resistance to EGFR tyrosine kinase inhibitors in patients with EGFR-mutated NSCLC.

5.
Cancer Immunol Immunother ; 72(8): 2585-2596, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37060363

RESUMO

PURPOSE: Though programmed cell death-1 (PD-1) inhibitors mainly target tumor-infiltrating lymphocytes (TILs) expressing PD-1, developing T cells in thymus also express PD-1 in their process of maturation. To predict the therapeutic effect of PD-1 inhibitors for thymoma, it is necessary to clarify the proportions of TILs and intratumoral developing T cells. METHODS: The expressions of CD4, CD8, and PD-1 on T cells were analyzed by flow cytometry in 31 thymomas. The amount of T cell receptor excision circles (TRECs), which can be detected in newly formed naïve T cells in the thymus, was evaluated using sorted lymphocytes from thymomas by quantitative PCR. The expressions of granzyme B (GZMB) and lymphocyte activation gene-3 (LAG-3) in PD-1 + CD8 T cells were analyzed by image cytometry using multiplex immunohistochemistry. RESULTS: The PD-1 + rate in both CD4 and CD8 T cells was significantly higher in type AB/B1/B2 than in type A/B3 thymomas. The amounts of TRECs in CD4 and CD8 T cells were significantly higher in type AB/B1/B2 than in type A/B3 thymomas and comparable to normal thymus. PD-1 expression at each stage of T cell development of type AB/B1/B2 thymomas was comparable to that of normal thymus. Both the percentages and cell densities of PD-1 + CD8 T cells expressing GZMB or LAG-3, which are known to contain tumor-reactive T cells, were significantly lower in type AB/B1/B2 thymomas. CONCLUSION: Most PD-1 + T cells in type AB/B1/B2 thymomas are intratumoral developing T cells and are not TILs.


Assuntos
Timoma , Neoplasias do Timo , Humanos , Timoma/terapia , Receptor de Morte Celular Programada 1 , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias do Timo/terapia , Linfócitos/metabolismo
6.
Mol Neurobiol ; 60(7): 3664-3677, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36918517

RESUMO

Dystrophin is the causative gene for Duchenne and Becker muscular dystrophy (DMD/BMD), and it produces full-length and short dystrophin, Dp427 and Dp71, respectively, in the brain. The existence of the different dystrophin molecular complexes has been known for a quarter century, so it is necessary to derive precise expression profiles of the molecular complexes in the brain to elucidate the mechanism of cognitive symptoms in DMD/BMD patients. In order to investigate the Dp71 expression profile in cerebellum, we employed Dp71-specific tag-insertion mice, which allowed for the specific detection of endogenous Dp71 in the immunohistochemical analysis and found its expressions in the glial cells, Bergmann glial (BG) cells, and astrocytes, whereas Dp427 was exclusively expressed in the inhibitory postsynapses within cerebellar Purkinje cells (PCs). Interestingly, we found different cell-type dependent dystrophin molecular complexes; i.e., glia-associated Dp71 was co-expressed with dystroglycan (DG) and dystrobrevinα, whereas synapse-associated Dp427 was co-expressed with DG and dystrobrevinß. Furthermore, we investigated the molecular relationship of Dp71 to the AQP4 water channel and the Kir4.1 potassium channel, and found biochemical associations of Dp71 with AQP4 and Kir4.1 in both the cerebellum and cerebrum. Immunohistochemical and cytochemical investigations revealed partial co-localizations of Dp71 with AQP4 and Kir4.1 in the glial cells, indicating Dp71 interactions with the channels in the BG cells and astrocytes. Taken together, different cell-types, glial cells and Purkinje neurons, in the cerebellum express different dystrophin molecular complexes, which may contribute to pathological and physiological processes through the regulation of the water/ion channel and inhibitory postsynapses.


Assuntos
Aquaporinas , Canais de Potássio Corretores do Fluxo de Internalização , Camundongos , Animais , Distrofina/metabolismo , Células de Purkinje/metabolismo , Sinapses/metabolismo , Cerebelo/metabolismo , Neuroglia/metabolismo , Aquaporinas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
7.
Reprod Biol ; 22(3): 100673, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35901620

RESUMO

The abnormal spindle-like, microcephaly-associated (ASPM) gene is a causative gene of autosomal recessive primary microcephaly (MCPH) 5 in humans, which is characterized by a reduction in brain volume. It was previously reported that truncated Aspm proteins in transgenic mice caused major defects in the germline, a severe reduction in ovary weight and the number of follicles accompanied by reduced fertility. However; it remains unknown whether a loss of Aspm induces abnormal ovarian function, resulting in female infertility. In order to assess the ovary function, we examined vaginal smear cytology from the age of 7 weeks to 100 weeks in CAG-mediated Cre-loxP conditional Aspm-/- knockout mice and control female mice. In addition, we evaluated the ovarian size, fibrosis ratio and the number of follicles (primordial, primary, secondary, antral and atretic follicles) in mice from 15 weeks to 100 weeks old by image analyses. Mann-Whitney U-test was used for statistical analysis. The size of the ovary was significantly reduced in Aspm knockout mice at 15-20 weeks, 40-50 weeks and 70-80 weeks old compared with the control mice. Furthermore, at all stages, we found a severe decrease in the number of developing follicles at 10-15 weeks, 40-50 weeks and 70-80 weeks old, accompanied by disrupted cyclic changes of vaginal cytology and an aberrant upregulation of Foxo3, Kitl, and Lhcgr in Aspm knockout female. These results suggested that Aspm might play an important role in the folliculogenesis and estrous cyclicity of the postnatal ovary during maturation and aging.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Microcefalia , Proteínas do Tecido Nervoso/metabolismo , Envelhecimento , Animais , Proteínas de Ligação a Calmodulina/genética , Feminino , Humanos , Lactente , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética
8.
Clin Case Rep ; 10(6): e5961, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35702618

RESUMO

Autopsy was performed on a COVID-19 patient, who suddenly died despite the extensive anti-viral and anti-inflammatory therapies. Although moderate subpleural fibrosis was seen, pathology of DAD, a well-known cause for pulmonary failure, was minimum. Instead, severe hemorrhage was observed. Therapeutic effects were indicated; however, why severe hemorrhage occurred was unclear.

9.
Cell Mol Life Sci ; 79(2): 109, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35098363

RESUMO

Duchenne muscular dystrophy (DMD), the most severe form of dystrophinopathies, is a fatal X-linked recessive neuromuscular disorder characterized by progressive muscle degeneration and various extents of intellectual disabilities. Physiological and pathological roles of the responsible gene, dystrophin, in the brain remain elusive due to the presence of multiple dystrophin products, mainly full-length dystrophin, Dp427, and the short product, Dp71. In this study, we generated a Dp71-specific hemagglutinin (HA) peptide tag-insertion mice to enable specific detection of intrinsic Dp71 expression by anti-HA-tag antibodies. Immunohistochemical detections in the transgenic mice demonstrated Dp71 expression not only at the blood-brain barrier, where astrocytic endfeet surround the microvessels, but also at the inhibitory postsynapse of hippocampal dentate granule neurons. Interestingly, hippocampal cornu ammonis (CA)1 pyramidal neurons were negative for Dp71, although Dp427 detected by anti-dystrophin antibody was clearly present at the inhibitory postsynapse, suggesting cell-type dependent dystrophin expressions. Precise examination using the primary hippocampal culture validated exclusive localization of Dp71 at the inhibitory postsynaptic compartment but not at the excitatory synapse in neurons. We further performed interactome analysis and found that Dp71 formed distinct molecular complexes, i.e. synapse-associated Dp71 interacted with dystroglycan (Dg) and dystrobrevinß (Dtnb), whereas glia-associated Dp71 did with Dg and dystrobrevinα (Dtna). Thus, our data indicate that Dp71 and its binding partners are relevant to the inhibitory postsynaptic function of hippocampal granule neurons and the novel Dp71-transgenic mouse provides a valuable tool to understand precise physiological expressions and functions of Dp71 and its interaction proteins in vivo and in vitro.


Assuntos
Distroglicanas/metabolismo , Proteínas Associadas à Distrofina/metabolismo , Distrofina/metabolismo , Neuroglia/metabolismo , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Distroglicanas/genética , Distrofina/genética , Proteínas Associadas à Distrofina/genética , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos Transgênicos , Microscopia Confocal , Neurônios/metabolismo , Neuropeptídeos/genética , Ligação Proteica
10.
Acta Histochem Cytochem ; 55(6): 193-202, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688137

RESUMO

Bisphenol A (BPA) is an endocrine disrupting chemical. Human epidemiological studies have suggested that adverse neurobehavioral outcomes are induced by fetal exposure to BPA. The remarkable differences in the corticogenesis between human and agyrencephalic mammals are an increase in the intermediate progenitor cells (IPCs) and a following increase in the subplate thickness. It is uncertain whether low doses of BPA (low-BPA) affect human early corticogenesis when basal progenitor cells (BPs) produce IPCs resulting in amplified neurogenesis. In this study, human-derived neuronal stem/progenitor cells were exposed to low-BPA or the vehicle only, and the resultant cell type-specific molecular changes and morphology were analyzed. We focused on stem cells immunoreactive for SOX2, BPs for NHLH1, and immature neurons for DCX. SOX2-positive cells significantly decreased at day in vitro (DIV) 4 and 7, whereas NHLH1-positive cells tended to be higher, while DCX-positive cells significantly increased at DIV7 when exposed to 100 nM of BPA compared with the vehicle. Morphologically DCX-positive cells showed a decrease in unipolar cells and an increase in multipolar cells when exposed to 100 nM of BPA compared with the vehicle. These results provide insights into the in vivo effect of low-BPA on neuronal differentiation in the human fetal corticogenesis.

11.
Neuropathology ; 41(3): 214-225, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33537992

RESUMO

We herein report a case of corticobasal syndrome (CBS) due to asymmetric degeneration of the motor cortex and substantia nigra with transactivation response DNA-binding protein of 43 kDa (TDP-43) proteinopathy, associated with Alzheimer's disease (AD) pathology. An 85-year-old man initially noticed that he had difficulty in walking and had trouble in moving his right hand and lower limb one year later. His gait disturbance was aggravated, and at the age of 87 years, his neurological examination revealed parkinsonism and positive frontal lobe signs. Brain magnetic resonance imaging (MRI) revealed atrophy of the left frontotemporal lobe and cerebral peduncle, and cerebral blood flow scintigraphy revealed hypoperfusion of the left frontotemporal lobe, leading to a possible diagnosis of CBS. At the age of 89 years, he was bedridden, and rarely spoke. He died of aspiration pneumonia five years after the onset of initial symptoms. At the autopsy, the brain weighed 1280 g and showed left-sided hemiatrophy of the cerebrum and cerebral peduncle. Neuropathological examination revealed AD pathology (Braak AT8 stage V, Braak stage C, CERAD B, Thal classification 5). Phosphorylated TDP-43 (p-TDP-43) immunohistochemistry revealed widespread deposits of dystrophic neurites (DNs), glial cytoplasmic inclusions (GCIs), and neuronal cytoplasmic inclusions (NCIs), which were most remarkable in layers II/III of the motor cortex and predominant on the left hemisphere of the frontal cortex, these neuropathology being consistent with frontotemporal lobar degeneration with TDP-43 (FTLD-TDP) type A. Interestingly, neuronal loss in the substantia nigra was more severe on the left than the right side, with a few phosphorylated tau (p-tau) and p-TDP-43 deposits. It is highly likely that asymmetric TDP-43 pathology rather than symmetric tau pathology contributed to the laterality of degeneration of the cerebral cortex, substantia nigra, and pyramidal tract, which led us to suggest that TDP-43 proteinopathy might be a primary cause.


Assuntos
Doença de Alzheimer/patologia , Córtex Motor/patologia , Substância Negra/patologia , Proteinopatias TDP-43/patologia , Idoso de 80 Anos ou mais , Atrofia/patologia , Autopsia , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Síndrome , Tomografia Computadorizada de Emissão de Fóton Único
12.
Hum Mol Genet ; 29(19): 3312-3326, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32996569

RESUMO

Dystrophin-dystroglycan complex (DGC) plays important roles for structural integrity and cell signaling, and its defects cause progressive muscular degeneration and intellectual disability. Dystrophin short product, Dp71, is abundantly expressed in multiple tissues other than muscle and is suspected of contributing to cognitive functions; however, its molecular characteristics and relation to dystroglycan (DG) remain unknown. Here, we report that DG physically interacts with Dp71 in cultured cells. Intriguingly, DG expression positively and DG knockdown negatively affected the steady-state expression, submembranous localization and subsequent phosphorylation of Dp71. Mechanistically, two EF-hand regions along with a ZZ motif of Dp71 mediate its association with the transmembrane proximal region, amino acid residues 788-806, of DG cytoplasmic domain. Most importantly, the pathogenic point mutations of Dp71, C272Y in the ZZ motif or L170del in the second EF-hand region, impaired its binding to DG, submembranous localization and phosphorylation of Dp71, indicating the relevance of DG-dependent Dp71 regulatory mechanism to pathophysiological conditions. Since Dp140, another dystrophin product, was also regulated by DG in the same manner as Dp71, our results uncovered a tight molecular relation between DG and dystrophin, which has broad implications for understanding the DGC-related cellular physiology and pathophysiology.


Assuntos
Membrana Celular/metabolismo , Distroglicanas/farmacologia , Distrofina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mutação , Animais , Membrana Celular/efeitos dos fármacos , Distrofina/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fosforilação
13.
Cancers (Basel) ; 12(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365457

RESUMO

Aspirin is one of the most promising over-the-counter drugs to repurpose for cancer treatment. In particular, aspirin has been reported to be effective against PIK3CA-mutated colorectal cancer (CRC); however, little information is available on how the PIK3CA gene status affects its efficacy. We found that the growth inhibitory effects of aspirin were impaired upon glutamine deprivation in PIK3CA-mutated CRC cells. Notably, glutamine dependency of aspirin-mediated growth inhibition was observed in PIK3CA-mutated cells but not PIK3CA wild type cells. Mechanistically, aspirin induced G1 arrest in PIK3CA-mutated CRC cells and inhibited the mTOR pathway, inducing the same phenotypes as glutamine deprivation. Moreover, our study including bioinformatic approaches revealed that aspirin increased the expression levels of glutaminolysis-related genes with upregulation of activating transcription factor 4 (ATF4) in PIK3CA-mutated CRC cells. Lastly, the agents targeting glutaminolysis demonstrated significant combined effects with aspirin on PIK3CA-mutated CRC cells. Thus, these findings not only suggest the correlation among aspirin efficacy, PIK3CA mutation and glutamine metabolism, but also the rational combinatorial treatments of aspirin with glutaminolysis-targeting agents against PIK3CA-mutated CRC.

14.
Biochem Biophys Res Commun ; 492(3): 349-355, 2017 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-28851655

RESUMO

The Dystrophin (Dp) gene is responsible for Duchenne muscular dystrophy (DMD), which is characterized by progressive muscular degeneration and variable degrees of cognitive impairment. Although Dp71 is the most abundant among the Dp isoforms in the brain, the regulatory mechanisms of the related expression levels have not been elucidated. In this study, we found that the constitutive expression levels of Dp71 in PC12 cells were sensitive to proteasomal inhibition. The ectopic expression of FLAG-tagged ubiquitin revealed that Dp71 was ubiquitinated intracellularly. Interestingly, proteasomal inhibition was accompanied by a posttranslational accumulation of modified Dp71, which was restored by protein phosphatase treatment in vitro, indicating that phosphorylation is responsible for the modification and affects the proteasome-dependent degradation of Dp71. Proteasomal activity-sensitive phosphorylated Dp71 is closely associated with syntrophin, a well-known binding partner of Dp71, and syntrophin is also regulated by proteasomal activity in a similar way to Dp71, suggesting that the posttranslational regulatory machinery for Dp71 level is coupled with Dp71-syntrophin molecular complex. Taken together, our results indicated that the expression levels of Dp71 are posttranslationally regulated by the phosphorylation-ubiquitin-proteasomal pathway, which may indicate the presence of regulatory mechanisms underlying the proteostasis of both Dp and its molecular complex, which may lead to better therapeutic approaches for the treatment of Dp-related diseases.


Assuntos
Distrofina/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Células Cultivadas , Neurônios/citologia , Neurônios/enzimologia , Células PC12 , Fosforilação , Ratos
15.
Biochem Biophys Res Commun ; 452(1): 79-84, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25152393

RESUMO

The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH2-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.


Assuntos
Distrofina/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo , Sinapses/metabolismo , Animais , Sequência de Bases , Primers do DNA , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos ICR , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Neuropathology ; 34(6): 527-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24985408

RESUMO

It has been reported that bisphenol A (BPA), a widespread xenoestrogen employed in the production of polycarbonate plastics, affects brain development in both humans and rodents. In the present study employing mice, we examined the effects of exposure to BPA (500 µg/kg/day) during fetal and lactational periods on the development of the locus coeruleus (LC) at the age of embryonic day 18 (E18), postnatal 3 weeks (P3W), P8W and P16W. The number of tyrosine hydroxylase-immunoreactive cells (TH-IR cells) in females exposed to BPA was decreased, compared with the control females at P3W. At P8W, the number of TH-IR cells in females exposed to BPA was significantly decreased, compared with the control females, whereas the number of TH-IR cells in males exposed to BPA was significantly increased, compared with the control males, which resulted in reversed transient sexual differences in the numbers of TH-IR cells observed in the controls at P8W. However, no significant changes were demonstrated at E18 or P16W. Next, we examined the density of the fibers containing norepinephrine transporter (NET) in the anterior cingulate cortex (ACC) and prefrontal cortex, at P3W, P8W and P16W, because NET would be beneficial in identifying the targets of the LC noradrenergic neurons. There were no significant differences shown in the density of the NET-positive fibers, between the control and the groups exposed to BPA. These results suggested that BPA might disrupt the development of physiological sexual differences in the LC-noradrenergic system in mice, although further studies are necessary to clarify the underlying mechanisms.


Assuntos
Compostos Benzidrílicos/toxicidade , Estrogênios não Esteroides/toxicidade , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/crescimento & desenvolvimento , Neurônios/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Fenóis/toxicidade , Animais , Feminino , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/crescimento & desenvolvimento , Giro do Cíngulo/metabolismo , Locus Cerúleo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
17.
PLoS One ; 9(1): e86186, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489698

RESUMO

L1cam (L1) is a cell adhesion molecule associated with a spectrum of human neurological diseases, the most well-known being X-linked hydrocephalus. Although we recently demonstrated that L1 plays an important role in neuronal migration during cortical histogenesis, the mechanisms of delayed migration have still not been clarified. In this study, we found that cell locomotion in the intermediate zone and terminal translocation in the primitive cortical zone (PCZ) were affected by L1-knockdown (L1-KD). Time-lapse analyses revealed that L1-KD neurons produced by in utero electroporation of shRNA targeting L1 (L1-shRNAs) molecules showed decreased locomotion velocity in the intermediate zone, compared with control neurons. Furthermore, L1-KD neurons showed longer and more undulated leading processes during translocation through the primitive cortical zone. The curvature index, a quantitative index for curvilinearity, as well as the length of the leading process, were increased, whereas the somal movement was decreased in L1-KD neurons during terminal translocation in the PCZ. These results suggest that L1 has a role in radial migration of cortical neurons.


Assuntos
Movimento Celular/fisiologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Animais , Movimento Celular/genética , Córtex Cerebral/embriologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Molécula L1 de Adesão de Célula Nervosa/genética , Neurônios/citologia , Neurônios/metabolismo , Gravidez , RNA Interferente Pequeno/genética
18.
J Neurosci Res ; 91(1): 42-50, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23073969

RESUMO

L1 is a cell adhesion molecule associated with a spectrum of human neurological diseases, the most well-known being X-linked hydrocephalus. L1 knockout (L1-KO) mice have revealed a variety of functions of L1 that were crucial in brain development in different brain regions. However; the function of L1 in neuronal migration during cortical histogenesis remains to be clarified. We therefore investigated the corticogenesis of mouse embryos in which L1 molecules were knocked down in selected neurons, by employing in utero electroporation with shRNAs targeting L1 (L1 shRNA). Although more than 50% of the cells transfected with no small hairpin RNA (shRNA; monster green fluorescent protein: MGFP only) vector at embryonic day 13 (E13) reached the cortical plate at E16, significantly fewer (27%) cells transfected with L1 shRNA migrated to the same extent. At E17, 22% of cells transfected with the MGFP-only vector were found in the intermediate zone, and significantly more (34%) cells transfected with L1 shRNA remained in the same zone. Furthermore, the directions of the leading process of neurons transfected with L1 shRNA became more dispersed compared with cells with the MGFP-only vector. In addition, two transcription factors expressed in the neurons, Satb2 and Tbr1, were shown to be reduced or aberrantly expressed in neurons transfected with L1 shRNA. These observations suggest that L1 plays an important role in regulating the locomotion and orientation of migrating neurons and the expression of transcription factors during neocortical development that might partially be responsible for the abnormal tract formation seen in L1-KO mice.


Assuntos
Movimento Celular/fisiologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação à Região de Interação com a Matriz/biossíntese , Neocórtex/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurogênese/fisiologia , Fatores de Transcrição/biossíntese , Animais , Regulação para Baixo , Eletroporação , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Molécula L1 de Adesão de Célula Nervosa/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas com Domínio T
19.
Mol Neurobiol ; 45(2): 287-97, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22258561

RESUMO

Duchenne muscular dystrophy (DMD) causes cognitive impairment in one third of the patients, although the underlying mechanisms remain to be elucidated. Recent studies showed that mutations in the distal part of the dystrophin gene correlate well with the cognitive impairment in DMD patients, which is attributed to Dp71. The study on the expression of the shortest isoform, Dp40, has not been possible due to the lack of an isoform specific antibody. Dp40 has the same promoter as that found in Dp71 and lacks the normal C-terminal end of Dp427. In the present study, we have raised polyclonal antibody against the N-terminal sequence common to short isoforms of dystrophin, including Dp40, and investigated the expression pattern of Dp40 in the mouse brain. Affinity chromatography with this antibody and the consecutive LC-MS/MS analysis on the interacting proteins revealed that Dp40 was abundantly expressed in synaptic vesicles and interacted with a group of presynaptic proteins, including syntaxin1A and SNAP25, which are involved in exocytosis of synaptic vesicles in neurons. We thus suggest that Dp40 may form a novel protein complex and play a crucial role in presynaptic function. Further studies on these aspects of Dp40 function might provide more insight into the molecular mechanisms of cognitive impairment found in patients with DMD.


Assuntos
Encéfalo/metabolismo , Distrofina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Animais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Isoformas de Proteínas/metabolismo
20.
Neuropathology ; 32(4): 447-57, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22239237

RESUMO

Bisphenol A (BPA) is an endocrine-disrupting chemical, widely used in various industries and the field of dentistry. The consequent increase in BPA exposure among humans has led us to some concerns regarding the potential deleterious effects on reproduction and brain development. The emphasis of this review is on the effects of prenatal and lactational exposure to low doses of BPA on brain development in mice. We demonstrated that prenatal exposure to BPA affected fetal murine neocortical development by accelerating neuronal differentiation/migration during the early embryonic stage, which was associated with up- and down-regulation of the genes critical for brain development, including the basic helix-loop-helix transcription factors. In the adult mice brains, both abnormal neocortical architecture and abnormal corticothalamic projections persisted in the group exposed to the BPA. Functionally, BPA exposure disturbed murine behavior, accompanied with a disrupted neurotransmitter system, including monoamines, in the postnatal development period and in adult mice. We also demonstrated that epigenetic alterations in promoter-associated CpG islands might underlie some of the effects on brain development after exposure to BPA.


Assuntos
Encéfalo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Neurogênese/efeitos dos fármacos , Fenóis/toxicidade , Animais , Compostos Benzidrílicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...