Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881365

RESUMO

Endothelial cells lining the blood vessel wall communicate intricately with the surrounding extracellular matrix, translating mechanical cues into biochemical signals. Moreover, vessels require the capability to enzymatically degrade the matrix surrounding them, to facilitate vascular expansion. c-Src plays a key role in blood vessel growth, with its loss in the endothelium reducing vessel sprouting and focal adhesion signalling. Here, we show that constitutive activation of c-Src in endothelial cells results in rapid vascular expansion, operating independently of growth factor stimulation or fluid shear stress forces. This is driven by an increase in focal adhesion signalling and size, with enhancement of localised secretion of matrix metalloproteinases responsible for extracellular matrix remodelling. Inhibition of matrix metalloproteinase activity results in a robust rescue of the vascular expansion elicited by heightened c-Src activity. This supports the premise that moderating focal adhesion-related events and matrix degradation can counteract abnormal vascular expansion, with implications for pathologies driven by unusual vascular morphologies.

2.
J Cell Biol ; 223(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913324

RESUMO

Here, we report the generation of a transgenic Lifeact-EGFP quail line for the investigation of actin organization and dynamics during morphogenesis in vivo. This transgenic avian line allows for the high-resolution visualization of actin structures within the living embryo, from the subcellular filaments that guide cell shape to the supracellular assemblies that coordinate movements across tissues. The unique suitability of avian embryos to live imaging facilitates the investigation of previously intractable processes during embryogenesis. Using high-resolution live imaging approaches, we present the dynamic behaviors and morphologies of cellular protrusions in different tissue contexts. Furthermore, through the integration of live imaging with computational segmentation, we visualize cells undergoing apical constriction and large-scale actin structures such as multicellular rosettes within the neuroepithelium. These findings not only enhance our understanding of tissue morphogenesis but also demonstrate the utility of the Lifeact-EGFP transgenic quail as a new model system for live in vivo investigations of the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina , Actinas , Animais Geneticamente Modificados , Proteínas de Fluorescência Verde , Codorniz , Animais , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Actinas/metabolismo , Actinas/genética , Citoesqueleto de Actina/metabolismo , Morfogênese , Embrião não Mamífero/metabolismo
3.
Commun Biol ; 7(1): 209, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378743

RESUMO

Autophagy-related genes have been closely associated with intestinal homeostasis. BECLIN1 is a component of Class III phosphatidylinositol 3-kinase complexes that orchestrate autophagy initiation and endocytic trafficking. Here we show intestinal epithelium-specific BECLIN1 deletion in adult mice leads to rapid fatal enteritis with compromised gut barrier integrity, highlighting its intrinsic critical role in gut maintenance. BECLIN1-deficient intestinal epithelial cells exhibit extensive apoptosis, impaired autophagy, and stressed endoplasmic reticulum and mitochondria. Remaining absorptive enterocytes and secretory cells display morphological abnormalities. Deletion of the autophagy regulator, ATG7, fails to elicit similar effects, suggesting additional novel autophagy-independent functions of BECLIN1 distinct from ATG7. Indeed, organoids derived from BECLIN1 KO mice show E-CADHERIN mislocalisation associated with abnormalities in the endocytic trafficking pathway. This provides a mechanism linking endocytic trafficking mediated by BECLIN1 and loss of intestinal barrier integrity. Our findings establish an indispensable role of BECLIN1 in maintaining mammalian intestinal homeostasis and uncover its involvement in endocytic trafficking in this process. Hence, this study has important implications for our understanding of intestinal pathophysiology.


Assuntos
Apoptose , Células Epiteliais , Camundongos , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Apoptose/genética , Células Epiteliais/metabolismo , Autofagia/genética , Homeostase , Mamíferos
4.
Nat Cell Biol ; 26(1): 26-28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38228828
5.
Nat Rev Mol Cell Biol ; 25(4): 252-269, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38093099

RESUMO

Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.


Assuntos
Junções Aderentes , Caderinas , Junções Aderentes/metabolismo , Caderinas/metabolismo , Comunicação Celular , Morfogênese , Desenvolvimento Embrionário , Adesão Celular/fisiologia
6.
Mol Biol Cell ; 35(1): br3, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903230

RESUMO

Apical extrusion is a tissue-intrinsic process that allows epithelia to eliminate unfit or surplus cells. This is exemplified by the early extrusion of apoptotic cells, which is critical to maintain the epithelial barrier and prevent inflammation. Apoptotic extrusion is an active mechanical process, which involves mechanotransduction between apoptotic cells and their neighbors, as well as local changes in tissue mechanics. Here we report that the preexisting mechanical tension at adherens junctions (AJs) conditions the efficacy of apoptotic extrusion. Specifically, increasing baseline mechanical tension by overexpression of a phosphomimetic Myosin II regulatory light chain (MRLC) compromises apoptotic extrusion. This occurs when tension is increased in either the apoptotic cell or its surrounding epithelium. Further, we find that the proinflammatory cytokine, TNFα, stimulates Myosin II and increases baseline AJ tension to disrupt apical extrusion, causing apoptotic cells to be retained in monolayers. Importantly, reversal of mechanical tension with an inhibitory MRLC mutant or tropomyosin inhibitors is sufficient to restore apoptotic extrusion in TNFα-treated monolayers. Together, these findings demonstrate that baseline levels of tissue tension are important determinants of apoptotic extrusion, which can potentially be coopted by pathogenetic factors to disrupt the homeostatic response of epithelia to apoptosis.


Assuntos
Junções Aderentes , Células Epiteliais , Junções Aderentes/metabolismo , Células Epiteliais/metabolismo , Mecanotransdução Celular , Fator de Necrose Tumoral alfa , Epitélio/metabolismo , Miosina Tipo II/metabolismo
7.
Mol Biol Cell ; 34(12): ar120, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37672337

RESUMO

As physical barriers, epithelia must preserve their integrity when challenged by mechanical stresses. Cell-cell junctions linked to the cortical cytoskeleton play key roles in this process, often with mechanotransduction mechanisms that reinforce tissues. Caveolae are mechanosensitive organelles that buffer tension via disassembly. Loss of caveolae, through caveolin-1 or cavin1 depletion, causes activation of PtdIns(4, 5)P2 signaling, recruitment of FMNL2 formin, and enhanced-cortical actin assembly. How this equates to physiological responses in epithelial cells containing endogenous caveolae is unknown. Here we examined the effect of mechanically inducing acute disassembly of caveolae in epithelia. We show that perturbation of caveolae, through direct mechanical stress, reinforces the actin cortex at adherens junctions. Increasing interactions with membrane lipids by introducing multiple phosphatidylserine-binding undecad cavin1 (UC1) repeat domains into cavin1 rendered caveolae more stable to mechanical stimuli. This molecular stabilization blocked cortical reinforcement in response to mechanical stress. Cortical reinforcement elicited by the mechanically induced disassembly of caveolae increased epithelial resilience against tensile stresses. These findings identify the actin cortex as a target of caveola mechanotransduction that contributes to epithelial integrity.


Assuntos
Actinas , Cavéolas , Cavéolas/metabolismo , Mecanotransdução Celular , Caveolina 1/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo
8.
Dev Cell ; 58(21): 2235-2248.e6, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37647898

RESUMO

Apoptosis is traditionally considered to be an immunologically silent form of cell death. Multiple mechanisms exist to ensure that apoptosis does not stimulate the immune system to cause inflammation or autoimmunity. Against this expectation, we now report that epithelia are programmed to provoke, rather than suppress, inflammation in response to apoptosis. We found that an acute inflammatory response led by neutrophils occurs in zebrafish and cell culture when apoptotic epithelial cells cannot be expelled from the monolayer by apical extrusion. This reflects an intrinsic circuit where ATP released from apoptotic cells stimulates epithelial cells in the immediate vicinity to produce interleukin-8 (IL-8). Apical extrusion therefore prevents inappropriate epithelial inflammation by physically eliminating apoptotic cells before they can activate this pro-inflammatory circuit. This carries the implication that epithelia may be predisposed to inflammation, elicited by sporadic or induced apoptosis, if apical extrusion is compromised.


Assuntos
Apoptose , Peixe-Zebra , Animais , Apoptose/fisiologia , Epitélio , Morte Celular , Inflamação
9.
Dev Cell ; 58(18): 1748-1763.e6, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37480844

RESUMO

Adherens junctions (AJs) allow cell contact to inhibit epithelial migration yet also permit epithelia to move as coherent sheets. How, then, do cells identify which contacts will inhibit locomotion? Here, we show that in human epithelial cells this arises from the orientation of cortical flows at AJs. When the leader cells from different migrating sheets make head-on contact with one another, they assemble AJs that couple together oppositely directed cortical flows. This applies a tensile signal to the actin-binding domain (ABD) of α-catenin, which provides a clutch to promote lateral adhesion growth and inhibit the lamellipodial activity necessary for migration. In contrast, AJs found between leader cells in the same migrating sheet have cortical flows aligned in the same direction, and no such mechanical inhibition takes place. Therefore, α-catenin mechanosensitivity in the clutch between E-cadherin and cortical F-actin allows cells to interpret the direction of motion via cortical flows and signal for contact to inhibit locomotion.


Assuntos
Actinas , Locomoção , Humanos , alfa Catenina , Caderinas , Células Epiteliais
10.
12.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865131

RESUMO

Epithelia are subject to diverse forms of mechanical stress during development and post-embryonic life. They possess multiple mechanisms to preserve tissue integrity against tensile forces, which characteristically involve specialized cell-cell adhesion junctions coupled to the cytoskeleton. Desmosomes connect to intermediate filaments (IF) via desmoplakin (DP)1,2, while the E-cadherin complex links to the actomyosin cytoskeleton in adherens junctions (AJ)3. These distinct adhesion-cytoskeleton systems support different strategies to preserve epithelial integrity, especially against tensile stress. IFs coupled to desmosomes can passively respond to tension by strain-stiffening4-10, whereas for AJs a variety of mechanotransduction mechanisms associated with the E-cadherin apparatus itself11,12, or proximate to the junctions13, can modulate the activity of its associated actomyosin cytoskeleton by cell signaling. We now report a pathway where these systems collaborate for active tension-sensing and epithelial homeostasis. We found that DP was necessary for epithelia to activate RhoA at AJ on tensile stimulation, an effect that required its capacity to couple IF to desmosomes. DP exerted this effect by facilitating the association of Myosin VI with E-cadherin, the mechanosensor for the tension-sensitive RhoA pathway at AJ12. This connection between the DP-IF system and AJ-based tension-sensing promoted epithelial resilience when contractile tension was increased. It further facilitated epithelial homeostasis by allowing apoptotic cells to be eliminated by apical extrusion. Thus, active responses to tensile stress in epithelial monolayers reflect an integrated response of the IF- and actomyosin-based cell-cell adhesion systems.

13.
STAR Protoc ; 4(1): 102077, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853715

RESUMO

Extracellular matrix (ECM) provides fundamental support for epithelial tissues and controls cell function. The chemistry and mechanical properties of ECM components, including stiffness, elasticity, and fibrillar organization, influence epithelial tissue responses. Here we present a protocol describing the culture and transfer of epithelial acini from Matrigel to collagen gel and an approach to axially align the collagen fibrils by the external gel stretching. This protocol uses the acini of MCF10A cells and needs to be modified for different cell lines. For complete details on the use and execution of this protocol, please refer to Katsuno-Kambe et al. (2021).1.


Assuntos
Colágeno , Matriz Extracelular , Matriz Extracelular/metabolismo , Colágeno/química , Elasticidade
14.
Curr Opin Cell Biol ; 80: 102154, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36822056

RESUMO

Cell adhesion systems commonly operate in close partnership with the cytoskeleton. Adhesion receptors bind to the cortex and regulate its dynamics, organization and mechanics; conversely, the cytoskeleton influences aspects of adhesion, including strength, stability and ductility. In this review we consider recent advances in elucidating such cooperation, focusing on interactions between classical cadherins and actomyosin. The evidence presents an apparent paradox. Molecular mechanisms of mechanosensation by the cadherin-actin apparatus imply that adhesion strengthens under tension. However, this does not always translate to the broader setting of confluent tissues, where increases in fluctuations of tension can promote intercalation due to the shrinkage of adherens junctions. Emerging evidence suggests that understanding of timescales may be important in resolving this issue, but that further work is needed to understand the role of adhesive strengthening across scales.


Assuntos
Caderinas , Citoesqueleto , Caderinas/metabolismo , Adesão Celular/fisiologia , Citoesqueleto/metabolismo , Actinas/metabolismo , Microtúbulos/metabolismo , Junções Aderentes/metabolismo
17.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314606

RESUMO

The assembly of a mature vascular network involves coordinated endothelial cell (EC) shape changes, including the process of EC elongation. How EC elongation is dynamically regulated in vivo is not fully understood. Here, we have generated a zebrafish mutant that is deficient for the integrin adaptor protein Talin 1 (Tln1). Using a new focal adhesion (FA) marker line expressing endothelial Vinculinb-eGFP, we demonstrate that EC FAs function dynamically and are lost in our tln1 mutants, allowing us to uncouple the primary roles of FAs in EC morphogenesis from the secondary effects that occur due to systemic vessel failure or loss of blood flow. Tln1 loss led to compromised F-actin rearrangements, perturbed EC elongation and disrupted cell-cell junction linearisation in vessel remodelling. Finally, chemical induction of actin polymerisation restored actin dynamics and EC elongation during vascular morphogenesis. Together, we identify that FAs are essential for EC elongation and junction linearisation in flow-pressured vessels and that they influence actin polymerisation in cellular morphogenesis. These observations can explain the severely compromised vessel beds and vascular leakage observed in mutant models that lack integrin signalling. This article has an associated 'The people behind the papers' interview.


Assuntos
Adesões Focais , Talina , Animais , Adesões Focais/metabolismo , Talina/genética , Talina/metabolismo , Actinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Células Endoteliais/metabolismo , Integrinas/genética , Integrinas/metabolismo , Adesão Celular
18.
Curr Biol ; 32(9): 1986-2000.e5, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35381185

RESUMO

Tissue morphogenesis arises from the culmination of changes in cell-cell junction length. Mechanochemical signaling in the form of RhoA underlies these ratcheted contractions, which occur asymmetrically. The underlying mechanisms of asymmetry remain unknown. We use optogenetically controlled RhoA in model epithelia together with biophysical modeling to uncover the mechanism lending to asymmetric vertex motion. Using optogenetic and pharmacological approaches, we find that both local and global RhoA activation can drive asymmetric junction contraction in the absence of tissue-scale patterning. We find that standard vertex models with homogeneous junction properties are insufficient to recapitulate the observed junction dynamics. Furthermore, these experiments reveal a local coupling of RhoA activation with E-cadherin accumulation. This motivates a coupling of RhoA-mediated increases in tension and E-cadherin-mediated adhesion strengthening. We then demonstrate that incorporating this force-sensitive adhesion strengthening into a continuum model is successful in capturing the observed junction dynamics. Thus, we find that a force-dependent intercellular "clutch" at tricellular vertices stabilizes vertex motion under increasing tension and is sufficient to generate asymmetries in junction contraction.


Assuntos
Junções Aderentes , Células Epiteliais , Junções Aderentes/fisiologia , Caderinas/genética , Adesão Celular , Epitélio , Morfogênese
19.
Cell Rep ; 38(5): 110316, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108534

RESUMO

Cell injury poses a substantial challenge for epithelia homeostasis. Several cellular processes preserve epithelial barriers in response to apoptosis, but less is known about other forms of cell death, such as pyroptosis. Here we use an inducible caspase-1 system to analyze how colon epithelial monolayers respond to pyroptosis. We confirm that sporadic pyroptotic cells are physically eliminated from confluent monolayers by apical extrusion. This is accompanied by a transient defect in barrier function at the site of the pyroptotic cells. By visualizing cell shape changes and traction patterns in combination with cytoskeletal inhibitors, we show that rapid lamellipodial responses in the neighbor cells are responsible for correcting the leakage and resealing the barrier. Cell contractility is not required for this resealing response, in contrast to the response to apoptosis. Therefore, pyroptosis elicits a distinct homeostatic response from the epithelium that is driven by the stimulation of lamellipodia in neighbor cells.


Assuntos
Morte Celular/fisiologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Piroptose/fisiologia , Apoptose/fisiologia , Humanos , Inflamassomos/metabolismo , Modelos Biológicos , Pseudópodes/metabolismo
20.
Eur Phys J E Soft Matter ; 45(1): 9, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076820

RESUMO

It is increasingly evident that cells in tissues and organs can communicate with one another using mechanical forces. Such mechanical signalling can serve as a basis for the assembly of cellular communities. For this to occur, there must be local instabilities in tissue mechanics that are the source of the signals, and mechanisms for changes in mechanical force to be transmitted and detected within tissues. In this review, we discuss these principles using the example of cell death by apoptosis, when it occurs in epithelia. This elicits the phenomenon of apical extrusion, which can rapidly eliminate apoptotic cells by expelling them from the epithelium. Apoptotic extrusion requires that epithelial cells detect the presence of nearby apoptotic cells, something which can be elicited by the mechanotransduction of tensile instabilities caused by the apoptotic cell. We discuss the central role that adherens junctions can play in the transmission and detection of mechanical signals from apoptotic cells.


Assuntos
Junções Aderentes , Mecanotransdução Celular , Apoptose , Comunicação , Células Epiteliais , Epitélio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...