Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 185: 110224, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35421807

RESUMO

Instability development in the pinch induces a locally enhanced electric field that accelerates the charged particles to extraordinary high energies. Rapid discharge is the singular state of the ion source confirming high plasma impedance. High energy ion beam is correlated to the electrical discharge parameters and consequently the ion acceleration potential is directly related to the mean ion energy. Multi-MeV ions have been measured by magnetic spectrometry and nuclear activation yield-ratio to obtain the ion energy spectra and critically analyze the ion spectrum. A set of magnetic lens arranged in an optimized coil configuration results in medical grade radioactivity of 0.5GBq for a low energy plasma focus. High energy proton beams enables evaluating the sensitivity of link-board components and the error structure identification, with a significant probability of 0.1perproton.


Assuntos
Elétrons , Íons , Análise Espectral
2.
Polymers (Basel) ; 11(5)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075895

RESUMO

In this work, polymers of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-triphenylamine] with side chains containing: pyrene (C1), diphenyl (C2), naphthalene (C3), and isopropyl (C6) structures were synthesized via a Suzuki coupling reaction. The structures were verified using NMR and cyclic voltammetry measurements provide the HOMO and LUMO of the polymers. The polymer with pyrene (C1) and naphthalene (C3) produced photoluminescence in the green while the polymer with the side chain containing diphenyl (C2) and isopropyl (C6) produce dual emission peaks of blue-green photoluminescence (PL). In order to examine the electroluminescence properties of the polymers, the solutions were spin-coated onto patterned ITO anode, dried, and subsequently coated with an Al cathode layer to form pristine single layer polymer LEDs. The results are compared to a standard PFO sample. The electroluminescence spectra resemble the PL spectra for C1 and C3. The devices of C2, C3, and C6 exhibit voltage-dependent EL. An additional red emission peak was detected for C2 and C6, resulting in spectra with peaks at 435 nm, 490 nm, and 625 nm. The effects of the side chains on the spectral characteristics of the polymer are discussed.

3.
PLoS One ; 13(1): e0188009, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29309425

RESUMO

The plasma focus device discussed herein is a Z-pinch pulsed-plasma arrangement. In this, the plasma is heated and compressed into a cylindrical column, producing a typical density of > 1025 particles/m3 and a temperature of (1-3) × 107 oC. The plasma focus has been widely investigated as a radiation source, including as ion-beams, electron-beams and as a source of x-ray and neutron production, providing considerable scope for use in a variety of technological situations. Thus said, the nature of the radiation emission depends on the dynamics of the plasma pinch. In this study of the characteristics of deuteron-beam emission, in terms of energy, fluence and angular distribution were analyzed. The 2.7 kJ plasma focus discharge has been made to operate at a pressure of less than 1 mbar rather than at its more conventional operating pressure of a few mbar. Faraday cup were used to determine deuteron-beam energy and deuteron-beam fluence per shot while CR-39 solid-state nuclear track detectors were employed in studying the angular distribution of deuteron emission. Beam energy and deuteron-beam fluence per shot have been found to be pressure dependent. The largest value of average deuteron energy measured for present conditions was found to be (52 ± 7) keV, while the deuteron-beam fluence per shot was of the order of 1015 ions/m2 when operated at a pressure of 0.2 mbar. The deuteron-beam emission is in the forward direction and is observed to be highly anisotropic.


Assuntos
Deutério , Gases em Plasma , Desenho de Equipamento , Microscopia , Estudos de Tempo e Movimento
4.
Sci Rep ; 6: 33966, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27659184

RESUMO

Carbon nanomaterials exhibit novel characteristics including enhanced thermal, electrical, mechanical, and biological properties. Nanodiamonds; first discovered in meteorites are found to be biocompatible, non-toxic and have distinct optical properties. Here we show that nanodiamonds with the size of <5 nm are formed directly from ethanol via 1025 nm femtosecond laser irradiation. The absorption of laser energy by ethanol increased non-linearly above 100 µJ accompanied by a white light continuum arises from fs laser filamentation. At laser energy higher than 300 µJ, emission spectra of C, O and H in the plasma were detected, indicating the dissociation of C2H5OH. Nucleation of the carbon species in the confined plasma within the laser filaments leads to the formation of nanodiamonds. The energy dependence and the roles of the nonlinear phenomenon to the formation of homogeneous nanodiamonds are discussed. This work brings new possibility for bottom-up nanomaterials synthesis based on nano and ultrafast laser physics.

5.
Arch Biochem Biophys ; 605: 34-40, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27056469

RESUMO

A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater.


Assuntos
Ar , Oxigênio/química , Gases em Plasma/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Água/química , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Eletricidade , Óxido Nítrico/química , Borracha , Águas Residuárias
6.
Polymers (Basel) ; 8(8)2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-30974574

RESUMO

Ultra-high molecular weight polyethylene (UHMWPE) is widely used in artificial joints in the replacement of knee, hip and shoulder that has been impaired as a result of arthritis or other degenerative joint diseases. The UHMWPE made plastic cup is placed in the joint socket in contact with a metal or ceramic ball affixed to a metal stem. Effective reinforcement of multi-walled carbon nanotubes (MWCNTs) in UHMWPE results in improved mechanical and tribological properties. The hydrophobic nature of the nanocomposites surface results in lesser contact with biological fluids during the physiological interaction. In this project, we investigate the UHMWPE/MWCNTs nanocomposites reinforced with MWCNTs at different concentrations. The samples were treated with cold argon plasma at different exposure times. The water contact angles for 60 min plasma-treated nanocomposites with 0.0, 0.5, 1.0, 1.5, and 2.0 wt % MWCNTs were found to be 55.65°, 52.51°, 48.01°, 43.72°, and 37.18° respectively. Increasing the treatment time of nanocomposites has shown transformation from a hydrophobic to a hydrophilic nature due to carboxyl groups being bonded on the surface for treated nanocomposites. Wear analysis was performed under dry, and also under biological lubrication, conditions of all treated samples. The wear factor of untreated pure UHMWPE sample was reduced by 68% and 80%, under dry and lubricated conditions, respectively, as compared to 2 wt % 60 min-treated sample. The kinetic friction co-efficient was also noted under both conditions. The hardness of nanocomposites increased with both MWCNTs loading and plasma treatment time. Similarly, the surface roughness of the nanocomposites was reduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...