Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 656: 409-423, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000253

RESUMO

HYPOTHESIS: Lyotropic liquid crystalline nanoparticles (LLCNPs) with complex internal nanostructures hold promise for drug delivery. Cubosomes, in particular, have garnered interest for their ability to fuse with cell membranes, potentially bypassing endosomal escape challenges and improving cellular uptake. The mesostructure of nanoparticles plays a crucial role in cellular interactions and uptake. Therefore, we hypothesise that the specific internal mesophase of the LLCNPs will affect their cellular interactions and uptake efficiencies, with cubosomes exhibiting superior cellular uptake compared to other LLCNPs. EXPERIMENTS: LLCNPs with various mesophases, including liposomes, cubosomes, hexosomes, and micellar cubosomes, were formulated and characterised. Their physicochemical properties and cytotoxicity were assessed. Chinese Hamster Ovarian (CHO) cells were treated with fluorescently labelled LLCNPs, and their interactions were monitored and quantified through confocal microscopy and flow cytometry. FINDINGS: The non-lamellar LLCNPs showed significantly higher cellular interactions compared to liposomes, with cubosomes exhibiting the highest level. However, there was no significant difference in relative cell uptake between cubosomes, hexosomes, and micellar cubosomes. Cell uptake experiments at 4 °C revealed the presence of an energy-independent uptake mechanism. This study provides the first comparative analysis of cellular interactions and uptake efficiencies among LLCNPs with varying mesophases, while maintaining similar size, composition, and surface charge.


Assuntos
Cristais Líquidos , Nanopartículas , Nanoestruturas , Cricetinae , Animais , Lipossomos , Micelas , Nanopartículas/química , Cristais Líquidos/química , Cricetulus
2.
J Colloid Interface Sci ; 607(Pt 1): 848-856, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34536939

RESUMO

HYPOTHESIS: Cubosomes made from the inverse micellar cubic mesophase (I2) with Fd3m symmetry possess a unique structure of closely packed inverse micelles. These have prospective functionality in sustained drug release. In this study, we hypothesised that similar to fatty acids, various fatty acetate compounds can induce the formation of micellar Fd3m cubosomes in monoolein (MO) nanoparticles. They are different to micellar cubosomes made of MO and a fatty acid, which are pH responsive and can transition from an Fd3m phase to an inverse hexagonal phase (H2) as pH increases. We hypothesised that by co-doping a fatty acetate and fatty acid into MO, precise control of the Fd3m-H2 phase transition pH in nanoparticles can be achieved. EXPERIMENTS: Five unsaturated fatty acetates with hydrocarbon chain lengths between 18 and 24 were added to MO at a weight ratio of 0.45 - 0.60 to form nanoparticles. The nanoparticles were prepared using high-throughput formulation and characterised with synchrotron small angle X-ray scattering (SAXS). MO nanoparticles doped with vaccenyl acetate and vaccenic acid were used to demonstrate the fine control over Fd3m-H2 phase transition pH. FINDINGS: Micellar cubosomes (Fd3m phase) were found in MO nanoparticles doped with fatty acetates. The Fd3m structure was stable in a wide pH range of 2.6 - 8 and at temperatures up to 45 °C. In MO nanoparticles doped with the acetate/acid mixture, the Fd3m-H2 phase transition pH was tuned between pH 5 and pH 7 by adjusting the ratio of vaccenyl acetate and vaccenic acid. As a H2 phase generally offers faster drug release than an Fd3m phase, the pH responsive lipid nanoparticles developed here may find application in orally administrated formulation, where the vehicles must pass a low pH environment in the stomach before reaching neutral pH in the blood.


Assuntos
Cristais Líquidos , Nanopartículas , Acetatos , Ácidos Graxos , Glicerídeos , Concentração de Íons de Hidrogênio , Micelas , Estudos Prospectivos , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...