Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 110(11): e16254, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37938809

RESUMO

PREMISE: Glacial/interglacial cycles and topographic complexity are both considered to have shaped today's diverse phylogeographic patterns of taxa from unglaciated eastern North America (ENA). However, few studies have focused on the phylogeography and population dynamics of wide-ranging ENA herbaceous species occurring in forest understory habitat. We examined the phylogeographic pattern and evolutionary history of Podophyllum peltatum L., a widely distributed herb inhabiting deciduous forests of ENA. METHODS: Using chloroplast DNA (cpDNA) sequences and nuclear microsatellite loci, we investigated the population structure and genetic diversity of the species. Molecular dating, demographic history analyses, and ecological niche modeling were also performed to illustrate the phylogeographic patterns. RESULTS: Our cpDNA results identified three main groups that are largely congruent with boundaries along the Appalachian Mountains and the Mississippi River, two major geographic barriers in ENA. Populations located to the east of the Appalachians and along the central Appalachians exhibited relatively higher levels of genetic diversity. Extant lineages may have diverged during the late Miocene, and range expansions of different groups may have happened during the Pleistocene glacial/interglacial cycles. CONCLUSIONS: Our findings indicate that geographic barriers may have started to facilitate the population divergence in P. peltatum before the Pleistocene. Persistence in multiple refugia, including areas around the central Appalachians during the Quaternary glacial period, and subsequent expansions under hospitable climatic condition, especially westward expansion, are likely responsible for the species' contemporary genetic structure and phylogeographic pattern.


Assuntos
Podophyllum peltatum , Filogeografia , Podophyllum peltatum/genética , DNA de Cloroplastos/genética , DNA de Cloroplastos/química , Demografia , Região dos Apalaches , Plantas/genética , Variação Genética , Filogenia
2.
Mol Phylogenet Evol ; 127: 978-987, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981470

RESUMO

Species of Podophylloideae (Berberidaceae, Ranunculales) are of great pharmacogenetic importance and represent the classic biogeographic disjunction between eastern Asia (EA; 10 ssp.) and eastern North America (ENA; 2 ssp.). However, previous molecular studies of this group suffered from low phylogenetic resolution and/or insufficient marker variability. This study is the first to report whole-plastome sequence data for all 12 species of Podophylloideae (14 individuals) and a close relative, Achlys triphylla. These 15 plastomes proved highly similar in overall size (156,240-157,370 bp), structure, gene order and content, also when compared to other Ranunculales, but also revealed some structural variations caused by the expansion or contraction of the inverted repeats (IRs) into or out of adjacent single-copy regions. Our phylogenomic analysis, based on 63 plastome-derived protein-coding genes (CDS), supported the monophyly of Podophylloideae and its two major genera (EA: Dysosma, EA/ENA: Diphylleia), with Podophyllum peltatum L. (ENA) being more closely related to Diphylleia than to the group's earliest diverging species, Sinopodophyllum hexandrum (EA). Furthermore, within this subfamily/dataset, matK was identified as the fastest evolving gene, which proved to be under positive selection especially in more recently derived, lower-elevation lineages of Dysosma, possibly reflecting an adaptive response to novel environmental (i.e. subtropical compared to higher-elevation/alpine) conditions. Finally, several highly variable noncoding regions were identified in the plastomes of Podophylloideae and Ranunculales. These highly variable loci should be the best choices for future phylogenetic, phylogeographic, and population-level genetic studies. Overall, our results demonstrate the power of plastid phylogenomics to improve phylogenetic resolution, and contribute to a better understanding of plastid gene evolution in Podophylloideae.


Assuntos
Berberidaceae/genética , Evolução Molecular , Genes de Plantas , Genomas de Plastídeos , Filogenia , Plastídeos/genética , Ásia Oriental , Humanos , Repetições de Microssatélites/genética , Filogeografia , Polimorfismo Genético , Ranunculales/classificação , Sequências Repetitivas de Ácido Nucleico/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...