Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 133: 106414, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36774691

RESUMO

The demand for metal nanoparticles is increasing with the widening application areas while causing environmental impact including pollution, toxic byproduct generation and depletion of natural resources. Incorporating natural materials in nanoparticle synthesis can contribute toward environmental sustainability. This paper is concerned with the biogenic synthesis of copper oxide nanoparticles (CuONPs) mediated by the plant species Phragmites australis. UV-vis, FT-IR, TEM and SEM studies were used to characterize the obtained CuONPs. The synthesized nanoparticles' antibacterial efficacy against Escherichia coli and Staphylococcus aureus was assessed. The CuONPs' reducing power, total phenolic component content, and flavonoid content were all calculated. Additionally, the dye removal abilities of copper oxide nanoparticles using Brilliant Blue R-250 were studied. The CuONP synthesis was assessed morphological by change of color and in the UV-vis analysis by the SPR band around 320 and 360 nm. FT-IR was used to monitor the functional groups present in the synthesized CuONPs. The obtained CuONPs were spherical and between 70 and 142 nm in size, according to the SEM data and TEM analyses were in accordance with SEM results. Using disk diffusion, the CuONPs demonstrated substantial antibacterial efficacy against S. aureus and E. coli, with inhibition zones of 18.5 ± 0.8 and 12.7 ± 0.6 mm, respectively. The MBC and MIC values were 62.5 µg/mL against S. aureus and 125 µg/mL against E. coli. The antioxidant abilities of P. australis and CuONPs were also confirmed. The CuONP solution's total phenolic substance content was 9.44 µg of pyrocathecol equivalent per milligram of nanoparticle, and its total flavonoid content was 16.24 µg of catechin equivalent per milligram of nanoparticle. Additionally, the synthesized CuONPs were found to be well effective on industrial dye removal by demonstrating high decolorization of 98 %. Also, the antibacterial activity of CuONPs was investigated through the interactions with S. aureus FtsZ, dihydropteroate synthase and thymidylate kinase. In silico molecular docking analysis was applied in the confirmation of the binding sites and interactions of active sites. CuONP showed -9.067, -8,048, and -7.349 kcal/mol of binding energies in molecular docking analysis of FtsZ, dihydropteroate synthase and thymidylate kinase proteins respectively. The results of this study suggested the antimicrobial, antioxidant and decolorative effect of synthesized CuONPs that can be apply in multiple areas of R&D and industry.


Assuntos
Produtos Biológicos , Nanopartículas Metálicas , Nanopartículas , Poaceae , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Cobre/farmacologia , Cobre/química , Di-Hidropteroato Sintase , Escherichia coli , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Nanopartículas/química , Óxidos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Produtos Biológicos/química , Poaceae/química , Poaceae/metabolismo
2.
Eur J Pharm Sci ; 162: 105830, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819623

RESUMO

In this study the chemotherapeutic agent Pirarubicin (PRB) which is known for its serious side effects was actively targeted to the breast cancer cells by uploading it to the biocompatible and biodegradable Sterically Stabilized Micelles (SSMs) made of 1,2- Distearoyl- sn- glycero­3- phosphoethanolamine- N- methoxy­ polyethylene glycol 2000 (DSPE-PEG2000) to enhance efficacy and reduce toxicity. Vasoactive intestinal peptide (VIP), the receptors of which are overexpressed on the breast cancer cells, was grafted on the surface of the micelles. To the best of our knowledge this is the first report on active targeting of PRB to tumor site. For this purpose, PRB loaded VIP grafted SSMs (PRB-SSM-VIP) were synthesized and characterized. The in vitro efficiency of PRB-SSM-VIP along with SSM and free PRB was investigated on the MCF-7 breast cancer cells and the in vivo effects were studied on the 4T1 breast cancer bearing nude mice. Solubilizing 300 µg of PRB using 2.81 mg of DSPE-PEG2000 resulted in obtaining monodispersed particles of 12.16 ± 2.7 nm with slow drug release profile. Incorporation of PRB within the hydrophobic DSPE core of SSM was confirmed using differential scanning calorimetry (DSC) and the spherical shape of the synthesized particles was demonstrated using atomic force microscope (AFM). Both in vitro and in vivo studies showed significantly higher activity of PRB-SSM-VIP compared to free PRB. In vivo imaging showed successful accumulation of PRB-SSM-VIP at the tumor site and 98.8% tumor eradication was obtained with no signs of side effects. Current study suggests that SSM-VIP could be used as new drug delivery system for targeting PRB to the breast cancer cells.


Assuntos
Neoplasias da Mama , Micelas , Animais , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/análogos & derivados , Feminino , Humanos , Camundongos , Camundongos Nus , Polietilenoglicóis , Peptídeo Intestinal Vasoativo
3.
Prep Biochem Biotechnol ; 49(9): 868-875, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31219372

RESUMO

Non-covalent complexes of urease/polyethylene glycol (PEG)-aldehyde were synthesized using regular molar ratios of urease and PEG-aldehyde at room temperature. The physical properties of the non-covalent complexes were analyzed in order to investigate the impact of coupling ratio, temperature, pH, storage stability, and thermal stability. Urease activity was analyzed by UV-Vis spectrophotometer at 630 nm. The results showed that the strongest thermal resistance was obtained using nU/nPEG:1/1 (mg/mL) complex within all molar ratios tested. The enzymatic activity of nU/nPEG:1/1 complex doubled the activity of the free enzyme. Therefore, this complex was chosen to be used in the analyses. When coupled with PEG-aldehyde, urease exhibited improved activity between pH 4.0-9.0 and the optimum pH was found to be 7.0. The thermal inactivation results of the complex demonstrated that higher activity remained (40%) when compared with the free enzyme (10%) at 60 °C. The storage stability of the non-covalent complex was 4 weeks which was greater than the storage stability of the free enzyme. A kinetic model was suggested in order to reveal the mechanism of enzymatic conversion. Potentiometric urea biosensor was prepared using two different membranes: carboxylated poly vinyl chloride (PVC) and palmitic acid containing PVC. The potentiometric responses of both sensors were tested against pH and temperature and the best results were obtained at pH 7.0 and 20-30 °C. Also, selectivity of the suggested biosensors toward Na+, Li+ Ca2+, and K+ ions was evaluated and the reproducibility responses of the urea biosensors were measured with acceptable results.


Assuntos
Técnicas Biossensoriais/métodos , Enzimas Imobilizadas/química , Ureia/sangue , Urease/química , Aldeídos/química , Canavalia/química , Canavalia/enzimologia , Estabilidade Enzimática , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Polietilenoglicóis/química , Potenciometria/métodos , Temperatura
4.
Colloids Surf B Biointerfaces ; 127: 73-8, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25646740

RESUMO

The purpose of this study is to understand the antibacterial properties of cationic polymers on solid surfaces by investigating the structure-activity relationships. The polymer synthesis was carried via ring opening metathesis polymerization (ROMP) of oxanorbornene derivatives. Modulation of molecular weights and alkyl chain lengths of the polymers were studied to investigate the antibacterial properties on the glass surface. Fluorescein (Na salt) staining contact angle measurements were used to characterize the positive charge density and hydrophobicity on the polymer coated surfaces. Positive charge density for the surface coated polymers with molecular weights of 3000 and 10,000 g mol(-1) is observed to be in the range of 2.3-28.5 nmol cm(-2). The ROMP based cationic pyridinium polymer with hexyl unit exhibited the highest bactericidal efficiency against Escherichia coli on solid surface killing 99% of the bacteria in 5 min. However, phenyl and octyl functionalized quaternary pyridinium groups exhibited lower biocidal properties on the solid surfaces compared to their solution phase biocidal properties. Studying the effect of threshold polymer concentrations on the antibacterial properties indicated that changing the concentrations of polymer coatings on the solid surface dramatically influences antibacterial efficiency.


Assuntos
Antibacterianos/farmacologia , Polimerização , Polímeros/química , Polímeros/farmacologia , Antibacterianos/química , Cátions , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Vidro/química , Testes de Sensibilidade Microbiana , Eletricidade Estática , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...