Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38672099

RESUMO

Endoplasmic reticulum (ER) stress is involved in the pathogenesis of many human diseases, such as cancer, type 2 diabetes, kidney disease, atherosclerosis and neurodegenerative diseases, in particular Parkinson's disease (PD). Since there is currently no treatment for PD, a better understanding of the molecular mechanisms underlying its pathogenesis, including the mechanisms of the switch from adaptation in the form of unfolded protein response (UPR) to apoptosis under ER stress conditions, may help in the search for treatment methods. Genetically encoded biosensors based on fluorescent proteins are suitable tools that facilitate the study of living cells and visualization of molecular events in real time. The combination of technologies to generate patient-specific iPSC lines and genetically encoded biosensors allows the creation of cell models with new properties. Using CRISPR-Cas9-mediated homologous recombination at the AAVS1 locus of iPSC with the genetic variant p.N370S (rs76763715) in the GBA1 gene, we created a cell model designed to study the activation conditions of the IRE1-XBP1 cascade of the UPR system. The cell lines obtained have a doxycycline-dependent expression of the genetically encoded biosensor XBP1-TagRFP, possess all the properties of human pluripotent cells, and can be used to test physical conditions and chemical compounds that affect the development of ER stress, the functioning of the UPR system, and in particular, the IRE1-XBP1 cascade.

2.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240451

RESUMO

Mutations in the GBA1 gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), cause Gaucher disease (GD) and are the most common genetic risk factor for Parkinson's disease (PD). Pharmacological chaperones (PCs) are being developed as an alternative treatment approach for GD and PD. To date, NCGC00241607 (NCGC607) is one of the most promising PCs. Using molecular docking and molecular dynamics simulation we identified and characterized six allosteric binding sites on the GCase surface suitable for PCs. Two sites were energetically more preferable for NCGC607 and located nearby to the active site of the enzyme. We evaluated the effects of NCGC607 treatment on GCase activity and protein levels, glycolipids concentration in cultured macrophages from GD (n = 9) and GBA-PD (n = 5) patients as well as in induced human pluripotent stem cells (iPSC)-derived dopaminergic (DA) neurons from GBA-PD patient. The results showed that NCGC607 treatment increased GCase activity (by 1.3-fold) and protein levels (by 1.5-fold), decreased glycolipids concentration (by 4.0-fold) in cultured macrophages derived from GD patients and also enhanced GCase activity (by 1.5-fold) in cultured macrophages derived from GBA-PD patients with N370S mutation (p < 0.05). In iPSC-derived DA neurons from GBA-PD patients with N370S mutation NCGC607 treatment increased GCase activity and protein levels by 1.1-fold and 1.7-fold (p < 0.05). Thus, our results showed that NCGC607 could bind to allosteric sites on the GCase surface and confirmed its efficacy on cultured macrophages from GD and GBA-PD patients as well as on iPSC-derived DA neurons from GBA-PD patients.


Assuntos
Doença de Gaucher , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Simulação de Acoplamento Molecular , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Técnicas de Cultura de Células , Sítios de Ligação , Glicolipídeos , Mutação
3.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901867

RESUMO

GBA variants increase the risk of Parkinson's disease (PD) by 10 times. The GBA gene encodes the lysosomal enzyme glucocerebrosidase (GCase). The p.N370S substitution causes a violation of the enzyme conformation, which affects its stability in the cell. We studied the biochemical characteristics of dopaminergic (DA) neurons generated from induced pluripotent stem cells (iPSCs) from a PD patient with the GBA p.N370S mutation (GBA-PD), an asymptomatic GBA p.N370S carrier (GBA-carrier), and two healthy donors (control). Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), we measured the activity of six lysosomal enzymes (GCase, galactocerebrosidase (GALC), alpha-glucosidase (GAA), alpha-galactosidase (GLA), sphingomyelinase (ASM), and alpha-iduronidase (IDUA)) in iPSC-derived DA neurons from the GBA-PD and GBA-carrier. DA neurons from the GBA mutation carrier demonstrated decreased GCase activity compared to the control. The decrease was not associated with any changes in GBA expression levels in DA neurons. GCase activity was more markedly decreased in the DA neurons of GBA-PD patient compared to the GBA-carrier. The amount of GCase protein was decreased only in GBA-PD neurons. Additionally, alterations in the activity of the other lysosomal enzymes (GLA and IDUA) were found in GBA-PD neurons compared to GBA-carrier and control neurons. Further study of the molecular differences between the GBA-PD and the GBA-carrier is essential to investigate whether genetic factors or external conditions are the causes of the penetrance of the p.N370S GBA variant.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Glucosilceramidase/genética , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem
4.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203497

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that ranks second in prevalence after Alzheimer's disease. The number of PD diagnoses increases annually. Nevertheless, modern PD treatments merely mitigate symptoms rather than preventing neurodegeneration progression. The creation of an appropriate model to thoroughly study the mechanisms of PD pathogenesis remains a current challenge in biomedicine. Recently, there has been an increase in data regarding the involvement of not only dopaminergic neurons of the substantia nigra but also astrocytes in the pathogenesis of PD. Cell models based on induced pluripotent stem cells (iPSCs) and their differentiated derivatives are a useful tool for studying the contribution and interaction of these two cell types in PD. Here, we generated two iPSC lines, ICGi034-B and ICGi034-C, by reprogramming peripheral blood mononuclear cells of a patient with a heterozygous mutation c.1226A>G (p.N370S) in the GBA1 gene by non-integrating episomal vectors encoding OCT4, KLF4, L-MYC, SOX2, LIN28, and mp53DD. The iPSC lines demonstrate the expression of pluripotency markers and are capable of differentiating into three germ layers. We differentiated the ICGi034-B and ICGi034-C iPSC lines into astrocytes. This resulting cell model can be used to study the involvement of astrocytes in the pathogenesis of GBA-associated PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Astrócitos , Leucócitos Mononucleares , Mutação , Doença de Parkinson/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...