Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 12(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577756

RESUMO

In industrial processes, the microtechnology concept refers to the operation of small devices that integrate the elements of operational and reaction units to save energy and space. The advancement of knowledge in the field of microfluidics has resulted in fabricating devices with different applications in micro and nanoscales. Micro- and nano-devices can provide energy-efficient systems due to their high thermal performance. Fluid flow in microchannels and microstructures has been widely considered by researchers in the last two decades. In this paper, a review study on fluid flow within microstructures is performed. The present study aims to present the results obtained in previous studies on this type of system. First, different types of flows in microchannels are examined. The present article will then review previous articles and present a general summary in each section. Then, the multi-phase flows inside the microchannels are discussed, and the flows inside the micropumps, microturbines, and micromixers are evaluated. According to the literature review, it is found that the use of microstructures enhances energy efficiency. The results of previous investigations revealed that the use of nanofluids as a working fluid in microstructures improves energy efficiency. Previous studies have demonstrated special attention to the design aspects of microchannels and micro-devices compared to other design strategies to improve their performance. Finally, general concluding remarks are presented, and the existing challenges in the use of these devices and suggestions for future investigations are presented.

2.
Carbohydr Polym ; 184: 376-382, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29352932

RESUMO

Nanocrystalline cellulose (NCC) a nature-based material, has gained significant attentions for its unique properties. The present study aims to investigate the flow behavior of cellulosic suspension containing non-wood pulp fibers and NCC, by means of rheological and pressure drop measurements. The NCC sample was prepared by sulfuric acid hydrolysis from Acacia mangium fibers. The rheological properties of kenaf/NCC suspensions were studied using viscosity and yield stress measurements. The pressure drop properties of the suspension flow were studied with respect to variation in flow velocity (0.4 m/s-3.6 m/s) and the NCC concentration (70 mg/l and 150 mg/l). The pressure drop results showed that the pulp suspension containing 150 mg/l NCC had higher drag reduction than kenaf suspension alone. The present insights into the flow of pulp/NCC suspension provide a new data and promote the application of NCC in industries.

3.
Sci Technol Adv Mater ; 16(3): 033502, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877783

RESUMO

Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.

4.
Carbohydr Polym ; 115: 785-803, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25439962

RESUMO

The requirement for high quality pulps which are widely used in paper industries has increased the demand for pulp refining (beating) process. Pulp refining is a promising approach to improve the pulp quality by changing the fiber characteristics. The diversity of research on the effect of refining on fiber properties which is due to the different pulp sources, pulp consistency and refining equipment has interested us to provide a review on the studies over the last decade. In this article, the influence of pulp refining on structural properties i.e., fibrillations, fine formation, fiber length, fiber curl, crystallinity and distribution of surface chemical compositions is reviewed. The effect of pulp refining on electrokinetic properties of fiber e.g., surface and total charges of pulps is discussed. In addition, an overview of different refining theories, refiners as well as some tests for assessing the pulp refining is presented.


Assuntos
Papel , Madeira/química , Eletroquímica
5.
ScientificWorldJournal ; 2014: 369593, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25254236

RESUMO

Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.


Assuntos
Algoritmos , Temperatura Alta , Nanopartículas/química , Condutividade Térmica , Água/química , Óxido de Alumínio/química , Simulação por Computador , Cobre/química , Hidrodinâmica , Modelos Químicos , Dióxido de Silício/química , Óxido de Zinco/química
6.
ScientificWorldJournal ; 2014: 504601, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25143981

RESUMO

In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.


Assuntos
Gases/química , Modelos Teóricos , Fuligem/química , Temperatura Alta , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...