Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 339: 139620, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37524265

RESUMO

Agro-industrial biorefinery effluent (AIBW) is considered a highly polluting source responsible for environmental contamination. It contains high loads of chemical oxygen demand (COD), and phenol, with several other organic and inorganic constituents. Thus, an economic treatment approach is required for the sustainable discharge of the effluent. The long-term process performance, contaminant removal and microbial response of AIBW to rice straw-based biochar (RSB) and biochar-based geopolymer nanocomposite (BGC) as biosorbents in an activated sludge process were investigated. The adsorbents operated in an extended aeration system with a varied hydraulic retention time of between 0.5 and 1.5 d and an AIBW concentration of 40-100% for COD and phenol removal under standard conditions. Response surface methodology was utilised to optimize the process variables of the bioreactor system. Process results indicated a significant reduction of COD (79.51%, 98.01%) and phenol (61.94%, 74.44%) for BEAS and GEAS bioreactors respectively, at 1 d HRT and AIBW of 70%. Kinetic model analysis indicated that the Stover-Kincannon model best describes the system functionality, while the Grau model was better in predicting substrate removal rate and both with a precision of between R2 (0.9008-0.9988). Microbial communities examined indicated the abundance of genera, following the biosorbent addition, while RSB and BGC had no negative effect on the bioreactor's performance and bacterial community structure of biomass. Proteobacteria and Bacteroidetes were abundant in BEAS. While the GEAS achieved higher COD and phenol removal due to high Nitrosomonas, Nitrospira, Comamonas, Methanomethylovorans and Acinetobacter abundance in the activated sludge. Thus, this study demonstrated that the combination of biosorption and activated sludge processes could be promising, highly efficient, and most economical for AIBW treatment, without jeopardising the elimination of pollutants or the development of microbial communities.


Assuntos
Microbiota , Águas Residuárias , Fenol , Esgotos/química , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos
2.
Polymers (Basel) ; 13(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34451150

RESUMO

The utilization of waste polyethylene terephthalate (WPET) as aggregate substitutes in pavement has been extensively promoted because of its environmental advantages. However, previous studies have shown that a high percentage of WPET reduces the performance of the pavement. To increase the durability of pavement and mitigate the environmental issues caused by WPET, WPET is treated with gamma-irradiation as a component in asphalt mixtures. The study objectives were to investigate the feasibility of using WPET granules as a sustainable aggregate on asphalt mixture stiffness and rutting and predict the asphalt mixture performance containing irradiated WPET via an RSM-ANN-framework. To achieve the objectives, stiffness and rutting tests were conducted to evaluate the WPET modified mixtures' performance. The result indicated that samples containing 40% irradiated WPET provided a better performance compared to mixtures containing 20% non-irradiated WPET, increasing the stiffness by 27% and 21% at 25 °C and 40 °C, respectively, and rutting resistance by 11% at 45 °C. Furthermore, both predictive models developed demonstrated excellent reliability. The ANN exhibited superior performance than the RSM. The utilization of WPET as aggregate in asphalt mixtures represents a way to addressing related recycling issues while also improving performance. With gamma-irradiation treatment, the utilization of WPET can be increased with improved asphalt mixture performance.

3.
Materials (Basel) ; 14(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34442978

RESUMO

Several agro-waste materials have been utilized for sustainable engineering and environmental application over the past decades, showing different degrees of effectiveness. However, information concerning the wider use of palm oil clinker (POC) and its performance is still lacking. Therefore, as a solid waste byproduct produced in one of the oil palm processing stages, generating a huge quantity of waste mostly dumped into the landfill, the waste-to-resource potential of POC should be thoroughly discussed in a review. Thus, this paper provides a systematic review of the current research articles on the several advances made from 2005 to 2021 regarding palm oil clinker physical properties and performances, with a particular emphasis on their commitments to cost savings during environmental and engineering applications. The review begins by identifying the potential of POC application in conventional and geopolymer structural elements such as beams, slabs, and columns made of concrete, mortar, or paste for coarse aggregates, sand, and cement replacement. Aspects such as performance of POC in wastewater treatment processes, fine aggregate and cement replacement in asphaltic and bituminous mixtures during highway construction, a bio-filler in coatings for steel manufacturing processes, and a catalyst during energy generation are also discussed. This review further describes the effectiveness of POC in soil stabilization and the effect of POC pretreatment for performance enhancement. The present review can inspire researchers to find research gaps that will aid the sustainable use of agroindustry wastes. The fundamental knowledge contained in this review can also serve as a wake-up call for researchers that will motivate them to explore the high potential of utilizing POC for greater environmental benefits associated with less cost when compared with conventional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...