Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1011502, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377133

RESUMO

Host resistance to a common protozoan parasite Toxoplasma gondii relies on a coordinated immune response involving multiple cell types, including macrophages. Embryonically seeded tissue-resident macrophages (TRMs) play a critical role in maintaining tissue homeostasis, but their role in parasite clearance is poorly understood. In this study, we uncovered a crucial aspect of host defense against T. gondii mediated by TRMs. Through the use of neutralizing antibodies and conditional IFN-γ receptor-deficient mice, we demonstrated that IFN-γ directly mediated the elimination of TRMs. Mechanistically, IFN-γ stimulation in vivo rendered macrophages unresponsive to macrophage colony-stimulating factor (M-CSF) and inactivated mTOR signaling by causing the shedding of CD115 (CSFR1), the receptor for M-CSF. Further experiments revealed the essential role of macrophage IFN-γ responsiveness in host resistance to T. gondii. The elimination of peritoneal TRMs emerged as an additional host defense mechanism aimed at limiting the parasite's reservoir. The identified mechanism, involving IFN-γ-induced suppression of CD115-dependent mTOR signaling in macrophages, provides insights into the adaptation of macrophage subsets during infection and highlights a crucial aspect of host defense against intracellular pathogens.


Assuntos
Parasitos , Animais , Camundongos , Fator Estimulador de Colônias de Macrófagos , Macrófagos , Receptores Proteína Tirosina Quinases , Serina-Treonina Quinases TOR
2.
Elife ; 102021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633285

RESUMO

Paneth cells constitutively produce antimicrobial peptides and growth factors that allow for intestinal homeostasis, host protection, and intestinal stem cell replication. Paneth cells rely heavily on the glycolytic metabolic program, which is in part controlled by the kinase complex Mechanistic target of rapamycin (mTORC1). Yet, little is known about mTOR importance in Paneth cell integrity under steady-state and inflammatory conditions. Our results demonstrate that IFN-γ, a crucial mediator of the intestinal inflammation, acts directly on murine Paneth cells to alter their mitochondrial integrity and membrane potential, resulting in an TORC1-dependent cell death mechanism distinct from canonical cell death pathways including apoptosis, necroptosis, and pyroptosis. These results were established with the purified cytokine and a physiologically relevant common Th1-inducing human parasite Toxoplasma gondii. Given the crucial role for IFN-γ, which is a cytokine frequently associated with the development of inflammatory bowel disease and compromised Paneth cell functions, the identified mechanisms underlying mTORC1-dependent Paneth cell death downstream of IFN-γ may provide promising novel approaches for treating intestinal inflammation.


Assuntos
Morte Celular , Interferon gama/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Celulas de Paneth/patologia , Animais , Feminino , Interferon gama/genética , Intestino Delgado/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Toxoplasma , Toxoplasmose/patologia
3.
PLoS Pathog ; 17(1): e1008299, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465134

RESUMO

Host resistance against intracellular pathogens requires a rapid IFN-γ mediated immune response. We reveal that T-bet-dependent production of IFN-γ is essential for the maintenance of inflammatory DCs at the site of infection with a common protozoan parasite, Toxoplasma gondii. A detailed analysis of the cellular sources for T-bet-dependent IFN-γ identified that ILC1s and to a lesser degree NK, but not TH1 cells, were involved in the regulation of inflammatory DCs via IFN-γ. Mechanistically, we established that T-bet dependent innate IFN-γ is critical for the induction of IRF8, an essential transcription factor for cDC1s. Failure to upregulate IRF8 in DCs resulted in acute susceptibility to T. gondii infection. Our data identifies that T-bet dependent production of IFN-γ by ILC1 and NK cells is indispensable for host resistance against intracellular infection via maintaining IRF8+ inflammatory DCs at the site of infection.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata/imunologia , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Linfócitos/imunologia , Proteínas com Domínio T/metabolismo , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Feminino , Fatores Reguladores de Interferon/fisiologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/microbiologia , Linfócitos/metabolismo , Linfócitos/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas com Domínio T/genética , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Toxoplasmose/microbiologia
4.
Infect Immun ; 88(4)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32014892

RESUMO

Rodents are critical for the transmission of Toxoplasma gondii to the definitive feline host via predation, and this relationship has been extensively studied as a model for immune responses to parasites. Neospora caninum is a closely related coccidian parasite of ruminants and canines but is not naturally transmitted by rodents. We compared mouse innate immune responses to N. caninum and T. gondii and found marked differences in cytokine levels and parasite growth kinetics during the first 24 h postinfection (hpi). N. caninum-infected mice produced significantly higher levels of interleukin-12 (IL-12) and interferon gamma (IFN-γ) by as early as 4 hpi, but the level of IFN-γ was significantly lower or undetectable in T. gondii-infected mice during the first 24 hpi. "Immediate" IFN-γ and IL-12p40 production was not detected in MyD88-/- mice. However, unlike IL-12p40-/- and IFN-γ-/- mice, MyD88-/- mice survived N. caninum infections at the dose used in this study. Serial measures of parasite burden showed that MyD88-/- mice were more susceptible to N. caninum infections than wild-type (WT) mice, and control of parasite burdens correlated with a pulse of serum IFN-γ at 3 to 4 days postinfection in the absence of detectable IL-12. Immediate IFN-γ was partially dependent on the T. gondii mouse profilin receptor Toll-like receptor 11 (TLR11), but the ectopic expression of N. caninum profilin in T. gondii had no impact on early IFN-γ production or parasite proliferation. Our data indicate that T. gondii is capable of evading host detection during the first hours after infection, while N. caninum is not, and this is likely due to the early MyD88-dependent recognition of ligands other than profilin.


Assuntos
Coccidiose/imunologia , Fatores Imunológicos/metabolismo , Interferon gama/metabolismo , Neospora/imunologia , Doenças dos Roedores/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Interferon gama/deficiência , Interleucina-12/deficiência , Interleucina-12/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/metabolismo , Neospora/crescimento & desenvolvimento , Análise de Sobrevida , Fatores de Tempo , Toxoplasma/crescimento & desenvolvimento
5.
PLoS Pathog ; 15(6): e1007872, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194844

RESUMO

Innate recognition of invading intracellular pathogens is essential for regulating robust and rapid CD4+ T cell effector function, which is critical for host-mediated immunity. The intracellular apicomplexan parasite, Toxoplasma gondii, is capable of infecting almost any nucleated cell of warm-blooded animals, including humans, and establishing tissue cysts that persist throughout the lifetime of the host. Recognition of T. gondii by TLRs is essential for robust IL-12 and IFN-γ production, two major cytokines involved in host resistance to the parasite. In the murine model of infection, robust IL-12 and IFN-γ production have been largely attributed to T. gondii profilin recognition by the TLR11 and TLR12 heterodimer complex, resulting in Myd88-dependent IL-12 production. However, TLR11 or TLR12 deficiency failed to recapitulate the acute susceptibility to T. gondii infection seen in Myd88-/- mice. T. gondii triggers inflammasome activation in a caspase-1-dependent manner resulting in cytokine release; however, it remains undetermined if parasite-mediated inflammasome activation impacts IFN-γ production and host resistance to the parasite. Using mice which lack different inflammasome components, we observed that the inflammasome played a limited role in host resistance when TLR11 remained functional. Strikingly, in the absence of TLR11, caspase-1 and -11 played a significant role for robust CD4+ TH1-derived IFN-γ responses and host survival. Moreover, we demonstrated that in the absence of TLR11, production of the caspase-1-dependent cytokine IL-18 was sufficient and necessary for CD4+ T cell-derived IFN-γ responses. Mechanistically, we established that T. gondii-mediated activation of the inflammasome and IL-18 were critical to maintain robust CD4+ TH1 IFN-γ responses during parasite infection in the absence of TLR11.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imunidade Inata , Inflamassomos/imunologia , Interferon gama/imunologia , Receptores Toll-Like/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Linfócitos T CD4-Positivos/parasitologia , Linfócitos T CD4-Positivos/patologia , Caspase 1/genética , Caspase 1/imunologia , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Inflamassomos/genética , Interferon gama/genética , Interleucina-18/genética , Interleucina-18/imunologia , Camundongos , Camundongos Knockout , Receptores Toll-Like/genética , Toxoplasmose Animal/genética , Toxoplasmose Animal/patologia
6.
Nat Immunol ; 20(1): 64-72, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30455460

RESUMO

Toxoplasma gondii is a common protozoan parasite that infects up to one third of the world's population. Notably, very little is known about innate immune sensing mechanisms for this obligate intracellular parasite by human cells. Here, by applying an unbiased biochemical screening approach, we show that human monocytes recognized the presence of T. gondii infection by detecting the alarmin S100A11 protein, which is released from parasite-infected cells via caspase-1-dependent mechanisms. S100A11 induced a potent chemokine response to T. gondii by engaging its receptor RAGE, and regulated monocyte recruitment in vivo by inducing expression of the chemokine CCL2. Our experiments reveal a sensing system for T. gondii by human cells that is based on the detection of infection-mediated release of S100A11 and RAGE-dependent induction of CCL2, a crucial chemokine required for host resistance to the parasite.


Assuntos
Quimiocina CCL2/metabolismo , Imunidade Inata , Proteínas S100/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/imunologia , Animais , Antígenos de Neoplasias/metabolismo , Caspase 1/metabolismo , Quimiotaxia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , RNA Interferente Pequeno/genética , Proteínas S100/genética , Células THP-1
7.
Cell Host Microbe ; 23(2): 177-190.e4, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29358083

RESUMO

The protozoan parasite Toxoplasma gondii triggers severe small intestinal immunopathology characterized by IFN-γ- and intestinal microbiota-mediated inflammation, Paneth cell loss, and bacterial dysbiosis. Paneth cells are a prominent secretory epithelial cell type that resides at the base of intestinal crypts and releases antimicrobial peptides. We demonstrate that the microbiota triggers basal Paneth cell-specific autophagy via induction of IFN-γ, a known trigger of autophagy, to maintain intestinal homeostasis. Deletion of the autophagy protein Atg5 specifically in Paneth cells results in exaggerated intestinal inflammation characterized by complete destruction of the intestinal crypts resembling that seen in pan-epithelial Atg5-deficient mice. Additionally, lack of functional autophagy in Paneth cells within intestinal organoids and T. gondii-infected mice causes increased sensitivity to the proinflammatory cytokine TNF along with increased intestinal permeability, leading to exaggerated microbiota- and IFN-γ-dependent intestinal immunopathology. Thus, Atg5 expression in Paneth cells is essential for tissue protection against cytokine-mediated immunopathology during acute gastrointestinal infection.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/imunologia , Interferon gama/imunologia , Celulas de Paneth/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/patologia , Animais , Proteína 5 Relacionada à Autofagia/genética , Linfócitos T CD4-Positivos/imunologia , Disbiose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/parasitologia , Fator de Necrose Tumoral alfa/imunologia
8.
Mucosal Immunol ; 11(3): 921-931, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29297501

RESUMO

Coordinated production of IFN-γ by innate and adaptive immune cells is central for host defense, but can also trigger immunopathology. The investigation of the lymphoid cell-specific contribution to the IFN-γ-mediated intestinal pathology during Toxoplasma gondii infection identified CD4+ T cells as a key cell population responsible for IFN-γ-dependent intestinal inflammation and Paneth cell loss, where T-bet-dependent group 1 innate lymphoid cells have a minor role in driving the parasite-induced immunopathology. This was evident from the analysis of T-bet deficiency that did not prevent the intestinal inflammation and instead revealed that T-bet-deficient CD4+ Th1 cells are sufficient for T. gondii-triggered acute ileitis and Paneth cell loss. These results revealed that T-bet-independent Th1 effector cells are major functional mediators of the type I immunopathological response during acute gastrointestinal infection.


Assuntos
Ileíte/imunologia , Intestinos/imunologia , Celulas de Paneth/patologia , Proteínas com Domínio T/metabolismo , Células Th1/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Apoptose , Células Cultivadas , Citocinas/metabolismo , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas com Domínio T/genética
10.
J Immunol ; 195(1): 36-40, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26026057

RESUMO

Neutrophils are an emerging cellular source of IFN-γ, a key cytokine that mediates host defense to intracellular pathogens. Production of IFN-γ by neutrophils, in contrast to lymphoid cells, is TLR- and IL-12-independent and the events associated with IFN-γ production by neutrophils are not understood. In this study, we show that mouse neutrophils express IFN-γ during their lineage development in the bone marrow niche at the promyelocyte stage independently of microbes. IFN-γ accumulates in primary neutrophilic granules and is released upon induction of degranulation. The developmental mechanism of IFN-γ production in neutrophils arms the innate immune cells prior to infection and assures the potential for rapid release of IFN-γ upon neutrophil activation, the first step during responses to many microbial infections.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Imunidade Inata/genética , Interferon gama/imunologia , Neutrófilos/imunologia , Animais , Degranulação Celular/imunologia , Linhagem da Célula/imunologia , Grânulos Citoplasmáticos/imunologia , Imunofenotipagem , Interferon gama/genética , Camundongos , Camundongos Knockout , Ativação de Neutrófilo , Neutrófilos/citologia , Transdução de Sinais
11.
J Neuroimmunol ; 276(1-2): 9-17, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25282087

RESUMO

Treatment of central nervous system (CNS) autoimmune disorders frequently involves the reduction, or depletion of immune-competent cells. Alternatively, immune cells are being sequestered away from the target organ by interfering with their movement from secondary lymphoid organs, or their migration into tissues. These therapeutic strategies have been successful in multiple sclerosis (MS), the most prevalent autoimmune inflammatory disorder of the CNS. However, many of the agents that are currently approved or in clinical development also have severe potential adverse effects that stem from the very mechanisms that mediate their beneficial effects by interfering with CNS immune surveillance. This review will outline the main cellular components of the innate and adaptive immune system that participate in host defense and maintain immune surveillance of the CNS. Their pathogenic role in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also discussed. Furthermore, an experimental model is introduced that may assist in evaluating the effect of therapeutic interventions on leukocyte homeostasis and function within the CNS. This model or similar models may become a useful tool in the repertoire of pre-clinical tests of pharmacological agents to better explore their potential for adverse events.


Assuntos
Sistema Nervoso Central/imunologia , Vigilância Imunológica , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Humanos
12.
Immunity ; 41(3): 478-492, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25220212

RESUMO

Systems biological analysis of immunity to the trivalent inactivated influenza vaccine (TIV) in humans revealed a correlation between early expression of TLR5 and the magnitude of the antibody response. Vaccination of Trl5(-/-) mice resulted in reduced antibody titers and lower frequencies of plasma cells, demonstrating a role for TLR5 in immunity to TIV. This was due to a failure to sense host microbiota. Thus, antibody responses in germ-free or antibiotic-treated mice were impaired, but restored by oral reconstitution with a flagellated, but not aflagellated, strain of E. coli. TLR5-mediated sensing of flagellin promoted plasma cell differentiation directly and by stimulating lymph node macrophages to produce plasma cell growth factors. Finally, TLR5-mediated sensing of the microbiota also impacted antibody responses to the inactivated polio vaccine, but not to adjuvanted vaccines or the live-attenuated yellow fever vaccine. These results reveal an unappreciated role for gut microbiota in promoting immunity to vaccination.


Assuntos
Formação de Anticorpos/imunologia , Vacinas contra Influenza/imunologia , Intestinos/microbiologia , Microbiota/imunologia , Receptor 5 Toll-Like/imunologia , Animais , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Escherichia coli/imunologia , Flagelina/imunologia , Humanos , Memória Imunológica/imunologia , Influenza Humana/prevenção & controle , Intestinos/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmócitos/imunologia , Plasmócitos/metabolismo , Vacina Antipólio de Vírus Inativado/imunologia , Transdução de Sinais/imunologia , Receptor 5 Toll-Like/biossíntese , Receptor 5 Toll-Like/genética , Vacina contra Febre Amarela/imunologia
13.
J Neuroimmunol ; 276(1-2): 232-5, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25227585

RESUMO

Immune surveillance of the CNS is critical for preventing infections; however, there is no accepted experimental model to assess the risk of infection when utilizing disease-modifying agents. We tested two approved agents for patients with multiple sclerosis (MS), glatiramer acetate and fingolimod, in an experimental model of CNS immune surveillance. C57BL/6 mice were infected with the ME49 strain of the neuroinvasive parasite Toxoplasma gondii (T. gondii) and then treated with GA and fingolimod. Neither treatment affected host survival; however, differences were observed in parasite load and in leukocyte numbers in the brains of infected animals. Here we demonstrate that this model could be a useful tool for analyzing immune surveillance.


Assuntos
Sistema Nervoso Central/imunologia , Vigilância Imunológica/efeitos dos fármacos , Imunossupressores/uso terapêutico , Peptídeos/uso terapêutico , Propilenoglicóis/uso terapêutico , Esfingosina/análogos & derivados , Toxoplasmose/tratamento farmacológico , Animais , Antígenos CD/metabolismo , Modelos Animais de Doenças , Cloridrato de Fingolimode , Acetato de Glatiramer , Camundongos , Camundongos Endogâmicos C57BL , Esfingosina/uso terapêutico , Toxoplasmose/mortalidade
14.
Infect Immun ; 82(8): 3090-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24866795

RESUMO

Toxoplasma gondii is an obligate intracellular parasite of clinical importance, especially in immunocompromised patients. Investigations into the immune response to the parasite found that T cells are the primary effector cells regulating gamma interferon (IFN-γ)-mediated host resistance. However, recent studies have revealed a critical role for the innate immune system in mediating host defense independently of the T cell responses to the parasite. This body of knowledge is put into perspective by the unifying theme that immunity to the protozoan parasite requires a strong IFN-γ host response. In the following review, we discuss the role of IFN-γ-producing cells and the signals that regulate IFN-γ production during T. gondii infection.


Assuntos
Interferon gama/imunologia , Leucócitos/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Humanos
15.
Gastroenterology ; 147(1): 184-195.e3, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24727021

RESUMO

BACKGROUND & AIMS: Activation of the transcription factor nuclear factor-κB (NF-κB) has been associated with the development of inflammatory bowel disease (IBD). Copper metabolism MURR1 domain containing 1 (COMMD1), a regulator of various transport pathways, has been shown to limit NF-κB activation. We investigated the roles of COMMD1 in the pathogenesis of colitis in mice and IBD in human beings. METHODS: We created mice with a specific disruption of Commd1 in myeloid cells (Mye-knockout [K/O] mice); we analyzed immune cell populations and functions and expression of genes regulated by NF-κB. Sepsis was induced in Mye-K/O and wild-type mice by cecal ligation and puncture or intraperitoneal injection of lipopolysaccharide (LPS), colitis was induced by administration of dextran sodium sulfate, and colitis-associated cancer was induced by administration of dextran sodium sulfate and azoxymethane. We measured levels of COMMD1 messenger RNA in colon biopsy specimens from 29 patients with IBD and 16 patients without (controls), and validated findings in an independent cohort (17 patients with IBD and 22 controls). We searched for polymorphisms in or near COMMD1 that were associated with IBD using data from the International IBD Genetics Consortium and performed quantitative trait locus analysis. RESULTS: In comparing gene expression patterns between myeloid cells from Mye-K/O and wild-type mice, we found that COMMD1 represses expression of genes induced by LPS. Mye-K/O mice had more intense inflammatory responses to LPS and developed more severe sepsis and colitis, with greater mortality. More Mye-K/O mice with colitis developed colon dysplasia and tumors than wild-type mice. We observed a reduced expression of COMMD1 in colon biopsy specimens and circulating leukocytes from patients with IBD. We associated single-nucleotide variants near COMMD1 with reduced expression of the gene and linked them with increased risk for ulcerative colitis. CONCLUSIONS: Expression of COMMD1 by myeloid cells has anti-inflammatory effects. Reduced expression or function of COMMD1 could be involved in the pathogenesis of IBD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Colite/prevenção & controle , Colite/fisiopatologia , Neoplasias do Colo/prevenção & controle , Neoplasias do Colo/fisiopatologia , Inflamação/genética , Inflamação/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Azoximetano/efeitos adversos , Biópsia , Estudos de Casos e Controles , Colite/induzido quimicamente , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/metabolismo
16.
Gut Microbes ; 5(1): 28-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637807

RESUMO

The intestinal microbiota changes dynamically from birth to adulthood. In this study we identified γ-Proteobacteria as a dominant phylum present in newborn mice that is suppressed in normal adult microbiota. The transition from a neonatal to a mature microbiota was in part regulated by induction of a γ-Proteobacteria-specific IgA response. Neocolonization experiments in germ-free mice further revealed a dominant Proteobacteria-specific IgA response triggered by the immature microbiota. Finally, a role for B cells in the regulation of microbiota maturation was confirmed in IgA-deficient mice. Mice lacking IgA had persistent intestinal colonization with γ-Proteobacteria that resulted in sustained intestinal inflammation and increased susceptibility to neonatal and adult models of intestinal injury. Collectively, these results identify an IgA-dependent mechanism responsible for the maturation of the intestinal microbiota.


Assuntos
Anticorpos Antibacterianos/imunologia , Colite/imunologia , Imunoglobulina A/imunologia , Intestinos/crescimento & desenvolvimento , Intestinos/imunologia , Microbiota , Proteobactérias/imunologia , Animais , Colite/genética , Colite/microbiologia , Feminino , Humanos , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação
17.
Nat Rev Immunol ; 14(2): 109-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24457485

RESUMO

Toxoplasma gondii is a protozoan parasite of global importance. In the laboratory setting, T. gondii is frequently used as a model pathogen to study mechanisms of T helper 1 (TH1) cell-mediated immunity to intracellular infections. However, recent discoveries have shown that innate type 1 immune responses that involve interferon-γ (IFNγ)-producing natural killer (NK) cells and neutrophils, rather than IFNγ-producing T cells, predetermine host resistance to T. gondii. This Review summarizes the Toll-like receptor (TLR)-dependent mechanisms that are responsible for parasite recognition and for the induction of IFNγ production by NK cells, as well as the emerging data about the TLR-independent mechanisms that lead to the IFNγ-mediated elimination of T. gondii.


Assuntos
Imunidade Inata , Toxoplasmose/imunologia , Animais , Humanos , Interferon gama/fisiologia , Fator 88 de Diferenciação Mieloide/fisiologia , Neutrófilos/imunologia , Óxido Nítrico/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Receptores Toll-Like/fisiologia , Toxoplasma/imunologia
18.
J Immunol ; 191(9): 4818-27, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24078692

RESUMO

TLRs play a central role in the innate recognition of pathogens and the activation of dendritic cells (DCs). In this study, we establish that, in addition to TLR11, TLR12 recognizes the profilin protein of the protozoan parasite Toxoplasma gondii and regulates IL-12 production by DCs in response to the parasite. Similar to TLR11, TLR12 is an endolysosomal innate immune receptor that colocalizes and interacts with UNC93B1. Biochemical experiments revealed that TLR11 and TLR12 directly bind to T. gondii profilin and are capable of forming a heterodimer complex. We also establish that the transcription factor IFN regulatory factor 8, not NF-κB, plays a central role in the regulation of the TLR11- and TLR12-dependent IL-12 response of DCs. These results suggest a central role for IFN regulatory factor 8-expressing CD8(+) DCs in governing the TLR11- and TLR12-mediated host defense against T. gondii.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Interleucina-12/metabolismo , Profilinas/imunologia , Receptores Toll-Like/metabolismo , Animais , Antígenos de Protozoários/imunologia , Antígenos CD8/metabolismo , Linhagem Celular , Células Dendríticas/imunologia , Células HEK293 , Humanos , Interleucina-12/biossíntese , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Profilinas/metabolismo , Ligação Proteica/imunologia , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/imunologia , Receptores Toll-Like/genética , Toxoplasma/imunologia , Toxoplasma/metabolismo , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/metabolismo , Toxoplasmose Animal/parasitologia
19.
Proc Natl Acad Sci U S A ; 110(26): 10711-6, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754402

RESUMO

IFN-γ is a major cytokine that is critical for host resistance to a broad range of intracellular pathogens. Production of IFN-γ by natural killer and T cells is initiated by the recognition of pathogens by Toll-like receptors (TLRs). In an experimental model of toxoplasmosis, we have identified the presence of a nonlymphoid source of IFN-γ that was particularly evident in the absence of TLR-mediated recognition of Toxoplasma gondii. Genetically altered mice lacking all lymphoid cells due to deficiencies in Recombination Activating Gene 2 and IL-2Rγc genes also produced IFN-γ in response to the protozoan parasite. Flow-cytometry and morphological examinations of non-NK/non-T IFN-γ(+) cells identified neutrophils as the cell type capable of producing IFN-γ. Selective elimination of neutrophils in TLR11(-/-) mice infected with the parasite resulted in acute susceptibility similar to that observed in IFN-γ-deficient mice. Similarly, Salmonella typhimurium infection of TLR-deficient mice induces the appearance of IFN-γ(+) neutrophils. Thus, neutrophils are a crucial source for IFN-γ that is required for TLR-independent host protection against intracellular pathogens.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Interferon gama/fisiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores Toll-Like/imunologia , Animais , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Interferon gama/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Linfócitos T/imunologia , Receptores Toll-Like/deficiência , Receptores Toll-Like/genética , Toxoplasma/imunologia , Toxoplasma/patogenicidade
20.
Nat Immunol ; 14(2): 136-42, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23263554

RESUMO

Activation of Toll-like receptors (TLRs) by pathogens triggers cytokine production and T cell activation, immune defense mechanisms that are linked to immunopathology. Here we show that IFN-γ production by CD4(+) T(H)1 cells during mucosal responses to the protozoan parasite Toxoplasma gondii resulted in dysbiosis and the elimination of Paneth cells. Paneth cell death led to loss of antimicrobial peptides and occurred in conjunction with uncontrolled expansion of the Enterobacteriaceae family of Gram-negative bacteria. The expanded intestinal bacteria were required for the parasite-induced intestinal pathology. The investigation of cell type-specific factors regulating T(H)1 polarization during T. gondii infection identified the T cell-intrinsic TLR pathway as a major regulator of IFN-γ production in CD4(+) T cells responsible for Paneth cell death, dysbiosis and intestinal immunopathology.


Assuntos
Infecções por Enterobacteriaceae/patologia , Enterobacteriaceae/crescimento & desenvolvimento , Celulas de Paneth/patologia , Transdução de Sinais/imunologia , Células Th1/patologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose Animal/patologia , Animais , Linfócitos T CD4-Positivos , Morte Celular , Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/complicações , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Interferon gama/genética , Interferon gama/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Celulas de Paneth/microbiologia , Celulas de Paneth/parasitologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Células Th1/microbiologia , Células Th1/parasitologia , Toxoplasma/imunologia , Toxoplasmose Animal/complicações , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/parasitologia , alfa-Defensinas/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...