Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(47): e2305574120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37956282

RESUMO

We apply a recently developed measurement technique for methane (CH4) isotopologues* (isotopic variants of CH4-13CH4, 12CH3D, 13CH3D, and 12CH2D2) to identify contributions to the atmospheric burden from fossil fuel and microbial sources. The aim of this study is to constrain factors that ultimately control the concentration of this potent greenhouse gas on global, regional, and local levels. While predictions of atmospheric methane isotopologues have been modeled, we present direct measurements that point to a different atmospheric methane composition and to a microbial flux with less clumping (greater deficits relative to stochastic) in both 13CH3D and 12CH2D2 than had been previously assigned. These differences make atmospheric isotopologue data sufficiently sensitive to variations in microbial to fossil fuel fluxes to distinguish between emissions scenarios such as those generated by different versions of EDGAR (the Emissions Database for Global Atmospheric Research), even when existing constraints on the atmospheric CH4 concentration profile as well as traditional isotopes are kept constant.

2.
Microb Ecol ; 86(4): 2790-2801, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37563275

RESUMO

High-throughput, multiplexed-amplicon sequencing has become a core tool for understanding environmental microbiomes. As researchers have widely adopted sequencing, many open-source analysis pipelines have been developed to compare microbiomes using compositional analysis frameworks. However, there is increasing evidence that compositional analyses do not provide the information necessary to accurately interpret many community assembly processes. This is especially true when there are large gradients that drive distinct community assembly processes. Recently, sequencing has been combined with Q-PCR (among other sources of total quantitation) to generate "Quantitative Sequencing" (QSeq) data. QSeq more accurately estimates the true abundance of taxa, is a more reliable basis for inferring correlation, and, ultimately, can be more reliably related to environmental data to infer community assembly processes. In this paper, we use a combination of published data sets, synthesis, and empirical modeling to offer guidance for which contexts QSeq is advantageous. As little as 5% variation in total abundance among experimental groups resulted in more accurate inference by QSeq than compositional methods. Compositional methods for differential abundance and correlation unreliably detected patterns in abundance and covariance when there was greater than 20% variation in total abundance among experimental groups. Whether QSeq performs better for beta diversity analysis depends on the question being asked, and the analytic strategy (e.g., what distance metric is being used); for many questions and methods, QSeq and compositional analysis are equivalent for beta diversity analysis. QSeq is especially useful for taxon-specific analysis; QSeq transformation and analysis should be the default for answering taxon-specific questions of amplicon sequence data. Publicly available bioinformatics pipelines should incorporate support for QSeq transformation and analysis.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Densidade Demográfica , Microbiota/genética , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Insects ; 13(11)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36354795

RESUMO

(1) Background: Condition-specific competition, when the outcome of competition varies with abiotic conditions, can facilitate species coexistence in spatially or temporally variable environments. Discarded vehicle tires degrade to leach contaminants into collected rainwater that provide habitats for competing mosquito species. We tested the hypothesis that more highly degraded tires that contain greater tire leachate alters interspecific mosquito competition to produce a condition-specific advantage for the resident, Culex pipiens, by altering the outcome of competition with the competitively superior invasive Aedes albopictus. (2) Methods: In a competition trial, varying densities of newly hatched Ae. albopictus and Cx. pipiens larvae were added to tires that had been exposed to three different ultraviolet (UV)-B conditions that mimicked full-sun, shade, or no UV-B conditions in the field. We also measured Cx. pipiens and Ae. albopictus oviposition preference among four treatments with varying tire leachate (high and low) and resources (high and low) amounts to determine if adult gravid females avoided habitats with higher tire leachate. (3) Results: We found stronger competitive effects of Cx. pipiens on the population performance and survival of Ae. albopictus in tires exposed to shade and full-sun conditions that had higher concentrations of contaminants. Further, zinc concentration was higher in emergent adults of Ae. albopictus than Cx. pipiens. Oviposition by these species was similar between tire leachate treatments but not by resource amount. (4) Conclusions: These results suggest that degraded tires with higher tire leachate may promote condition-specific competition by reducing the competitive advantage of invasive Ae. albopictus over resident Cx. pipiens and, combined with Cx. pipiens' preferential oviposition in higher resource sites, contribute to the persistence of the resident species.

5.
ISME J ; 14(8): 1943-1954, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32341473

RESUMO

Fungal endophytes can improve plant tolerance to abiotic stress. However, the role of these plant-fungal interactions in invasive species ecology and their management implications remain unclear. This study characterized the fungal endophyte communities of native and invasive lineages of Phragmites australis and assessed the role of dark septate endophytes (DSE) in salt tolerance of this species. We used Illumina sequencing to characterize root fungal endophytes of contiguous stands of native and invasive P. australis along a salinity gradient. DSE colonization was assessed throughout the growing season in the field, and effects of fungal inoculation on salinity tolerance were investigated using laboratory and greenhouse studies. Native and invasive lineages had distinct fungal endophyte communities that shifted across the salinity gradient. DSE colonization was greater in the invasive lineage and increased with salinity. Laboratory studies showed that DSE inoculation increased P. australis seedling survival under salt stress; and a greenhouse assay revealed that the invasive lineage had higher aboveground biomass under mesohaline conditions when inoculated with a DSE. We observed that P. australis can establish mutualistic associations with DSE when subjected to salt stress. This type of plant-fungal association merits further investigation in integrated management strategies of invasive species and restoration of native Phragmites.


Assuntos
Endófitos , Tolerância ao Sal , Endófitos/genética , Raízes de Plantas , Plantas , Poaceae , Estresse Fisiológico
6.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31836576

RESUMO

Despite glyphosate's wide use for weed control in agriculture, questions remain about the herbicide's effect on soil microbial communities. The existing scientific literature contains conflicting results, from no observable effect of glyphosate to the enrichment of agricultural pathogens such as Fusarium spp. We conducted a comprehensive field-based study to compare the microbial communities on the roots of plants that received a foliar application of glyphosate to adjacent plants that did not. The 2-year study was conducted in Beltsville, MD, and Stoneville, MS, with corn and soybean crops grown in a variety of organic and conventional farming systems. By sequencing environmental metabarcode amplicons, the prokaryotic and fungal communities were described, along with chemical and physical properties of the soil. Sections of corn and soybean roots were plated to screen for the presence of plant pathogens. Geography, farming system, and season were significant factors determining the composition of fungal and prokaryotic communities. Plots treated with glyphosate did not differ from untreated plots in overall microbial community composition after controlling for other factors. We did not detect an effect of glyphosate treatment on the relative abundance of organisms such as Fusarium spp.IMPORTANCE Increasing the efficiency of food production systems while reducing negative environmental effects remains a key societal challenge to successfully meet the needs of a growing global population. The herbicide glyphosate has become a nearly ubiquitous component of agricultural production across the globe, enabling an increasing adoption of no-till agriculture. Despite this widespread use, there remains considerable debate on the consequences of glyphosate exposure. In this paper, we examine the effect of glyphosate on soil microbial communities associated with the roots of glyphosate-resistant crops. Using metabarcoding techniques, we evaluated prokaryotic and fungal communities from agricultural soil samples (n = 768). No effects of glyphosate were found on soil microbial communities associated with glyphosate-resistant corn and soybean varieties across diverse farming systems.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Glicina/análogos & derivados , Herbicidas/administração & dosagem , Microbiota , Raízes de Plantas/microbiologia , Microbiologia do Solo , Glicina/administração & dosagem , Maryland , Microbiota/efeitos dos fármacos , Mississippi , Micobioma , Glycine max/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Glifosato
7.
Front Microbiol ; 10: 2330, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649656

RESUMO

Urbanization results in the systemic conversion of land-use, driving habitat and biodiversity loss. The "urban convergence hypothesis" posits that urbanization represents a merging of habitat characteristics, in turn driving physiological and functional responses within the biotic community. To test this hypothesis, we sampled five cities (Baltimore, MD, United States; Helsinki and Lahti, Finland; Budapest, Hungary; Potchefstroom, South Africa) across four different biomes. Within each city, we sampled four land-use categories that represented a gradient of increasing disturbance and management (from least intervention to highest disturbance: reference, remnant, turf/lawn, and ruderal). Previously, we used amplicon sequencing that targeted bacteria/archaea (16S rRNA) and fungi (ITS) and reported convergence in the archaeal community. Here, we applied shotgun metagenomic sequencing and QPCR of functional genes to the same soil DNA extracts to test convergence in microbial function. Our results suggest that urban land-use drives changes in gene abundance related to both the soil N and C metabolism. Our updated analysis found taxonomic convergence in both the archaeal and bacterial community (16S amplicon data). Convergence of the archaea was driven by increased abundance of ammonia oxidizing archaea and genes for ammonia oxidation (QPCR and shotgun metagenomics). The proliferation of ammonia-oxidizers under turf and ruderal land-use likely also contributes to the previously documented convergence of soil mineral N pools. We also found a higher relative abundance of methanogens (amplicon sequencing), a higher relative abundance of gene sequences putatively identified as Ni-Fe hydrogenase and nickel uptake (shotgun metagenomics) under urban land-use; and a convergence of gene sequences putatively identified as contributing to the nickel transport function under urban turf sites. High levels of disturbance lead to a higher relative abundance of gene sequences putatively identified as multiple antibiotic resistance protein marA and multidrug efflux pump mexD, but did not lead to an overall convergence in antibiotic resistance gene sequences.

8.
Waste Manag ; 87: 62-70, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31109562

RESUMO

A robust anaerobic digestion (AD) inoculum is key to a successful digestion process by providing the abundant bacteria needed for converting substrate to useable methane (CH4). While transporting digester contents from one AD to another for digester startup has been the norm, transportation costs are high, and it is not feasible to transport wet inoculum to remote locations. In this study, the impact of preservation of AD inoculum via lyophilization was investigated for the purposes of digester startup and restabilization. The effect of lyophilizing inoculum on CH4 production using food waste as the substrate was tested using biochemical methane potential (BMP) tests under the following conditions: (1) three inoculum sources, (2) two inoculum to substrate ratios (ISR), (3) two cryoprotectants, and (4) two inoculum growth phases. After lyophilization with skim milk, the three inocula produced 144-146 mL CH4/g volatile solids (VS) and 194-225 mL CH4/g VS at a 2:1 and 4:1 ISR, respectively, with 33-57% more CH4 at the 4:1 ISR. Preservation with 10% skim milk exhibited complete recovery of CH4 production, while 10% glycerol and 10% glycerol/skim milk mixture yielded 76% and 4% CH4 recovery, respectively. Inoculum growth phase before preservation (mid-exponential or stationary growth phase) did not significantly affect CH4 recovery. The study indicates that inoculum can be preserved via lyophilization using 10% skim milk as a cryoprotectant and reactivated for food waste digestion. The results provide a systematic quantification of the conditions needed to successfully preserve a mixed AD inoculum.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Alimentos , Liofilização
9.
Microorganisms ; 7(3)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845660

RESUMO

Urban expansion causes coastal wetland loss, and environmental stressors associated with development can lead to wetland degradation and loss of ecosystem services. This study investigated the effect of urbanization on prokaryotic community composition in tidal freshwater wetlands. Sites in an urban, suburban, and rural setting were located near Buenos Aires, Argentina, and Washington D.C., USA. We sampled soil associated with two pairs of functionally similar plant species, and used Illumina sequencing of the 16S rRNA gene to examine changes in prokaryotic communities. Urban stressors included raw sewage inputs, nutrient pollution, and polycyclic aromatic hydrocarbons. Prokaryotic communities changed along the gradient (nested PerMANOVA, Buenos Aires: p = 0.005; Washington D.C.: p = 0.001), but did not differ between plant species within sites. Indicator taxa included Methanobacteria in rural sites, and nitrifying bacteria in urban sites, and we observed a decrease in methanogens and an increase in ammonia-oxidizers from rural to urban sites. Functional profiles in the Buenos Aires communities showed higher abundance of pathways related to nitrification and xenobiotic degradation in the urban site. These results suggest that changes in prokaryotic taxa across the gradient were due to surrounding stressors, and communities in urban and rural wetlands are likely carrying out different functions.

10.
FEMS Microbiol Ecol ; 94(11)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169564

RESUMO

New soil organic matter (SOM) models highlight the role of microorganisms in plant litter decomposition and storage of microbial-derived carbon (C) molecules. Wetlands store more C per unit area than any other ecosystem, but SOM storage mechanisms such as aggregation and metal complexes are mostly untested in wetlands. This review discusses what is currently known about the role of microorganisms in SOM formation and C sequestrations, as well as, measures of microbial communities as they relate to wetland C cycling. Studies within the last decade have yielded new insights about microbial communities. For example, microbial communities appear to be adapted to short-term fluctuations in saturation and redox and researchers have observed synergistic pairings that in some cases run counter to thermodynamic theory. Significant knowledge gaps yet to be filled include: (i) What controls microbial access to and decomposition of plant litter and SOM? (ii) How does microbial community structure shape C fate, across different wetland types? (iii) What types of plant and microbial molecules contribute to SOM accumulation? Studies examining the active microbial community directly or that utilize multi-pronged approaches are shedding new light on microbial functional potential, however, and promise to improve wetland C models in the near future.


Assuntos
Carbono/metabolismo , Microbiologia do Solo , Solo/química , Áreas Alagadas , Plantas
11.
Oecologia ; 188(1): 237-250, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948315

RESUMO

In temperate deciduous forests of eastern USA, most earthworm communities are dominated by invasive species. Their structure and functional group composition have critical impacts on ecological properties and processes. However, the factors determining their community structure are still poorly understood, and little is known regarding their dynamics during forest succession and the mechanisms leading to these changes. Earthworm communities are usually assumed to be stable and driven by vegetation. In contrast, the importance of dispersal and ecological drift is seldom acknowledged. By analyzing a 19-year dataset collected from forest stands in eastern USA, we demonstrated that on a decadal timescale, earthworm community dynamics are shaped by the interplay of selection, dispersal, and ecological drift. We highlighted that forests at different successional stages have distinct earthworm species and functional groups as a result of environmental filtering through leaf litter quality. Specifically, young forests are characterized by soil-feeding species that rely on relatively fresh soil organic matter derived from fast-decomposing litter, whereas old forests are characterized by those feeding on highly processed soil organic matter derived from slow-decomposing litter. In addition, year-to-year species gains and losses are primarily driven by dispersal from regional to local species pools, and by local extinction resulted from competition and ecological drift. We concluded that with continued dispersal of European species and the recent "second wave" of earthworm invasion by Asian species from the surrounding landscape, earthworms at the investigated forests are well-established, and will remain as the major drivers of soil development for the foreseeable future.


Assuntos
Oligoquetos , Animais , Florestas , Espécies Introduzidas , Folhas de Planta , Solo
12.
J Anim Ecol ; 87(2): 341-353, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28682480

RESUMO

The amphibian skin microbiome is recognized for its role in defence against pathogens, including the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd). Yet, we have little understanding of evolutionary and ecological processes that structure these communities, especially for salamanders and closely related species. We investigated patterns in the distribution of bacterial communities on Plethodon salamander skin across host species and environments. Quantifying salamander skin microbiome structure contributes to our understanding of how host-associated bacteria are distributed across the landscape, among host species, and their putative relationship with disease. We characterized skin microbiome structure (alpha-diversity, beta-diversity and bacterial operational taxonomic unit [OTU] abundances) using 16S rRNA gene sequencing for co-occurring Plethodon salamander species (35 Plethodon cinereus, 17 Plethodon glutinosus, 10 Plethodon cylindraceus) at three localities to differentiate the effects of host species from environmental factors on the microbiome. We sampled the microbiome of P. cinereus along an elevational gradient (n = 50, 700-1,000 m a.s.l.) at one locality to determine whether elevation predicts microbiome structure. Finally, we quantified prevalence and abundance of putatively anti-Bd bacteria to determine if Bd-inhibitory bacteria are dominant microbiome members. Co-occurring salamanders had similar microbiome structure, but among sites salamanders had dissimilar microbiome structure for beta-diversity and abundance of 28 bacterial OTUs. We found that alpha-diversity increased with elevation, beta-diversity and the abundance of 17 bacterial OTUs changed with elevation (16 OTUs decreasing, 1 OTU increasing). We detected 11 putatively anti-Bd bacterial OTUs that were present on 90% of salamanders and made up an average relative abundance of 83% (SD ± 8.5) per salamander. All salamanders tested negative for Bd. We conclude that environment is more influential in shaping skin microbiome structure than host differences in these congeneric species, and suggest that environmental characteristics that covary with elevation influence microbiome structure. High prevalence and abundance of anti-Bd bacteria may contribute to low Bd levels in these populations of Plethodon salamanders.


Assuntos
Meio Ambiente , Interações entre Hospedeiro e Microrganismos/fisiologia , Microbiota/fisiologia , Pele/microbiologia , Urodelos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Especificidade de Hospedeiro , Microbiota/genética , RNA Ribossômico 16S/genética
13.
Nat Ecol Evol ; 1(5): 123, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28812698

RESUMO

Urbanization alters the physicochemical environment, introduces non-native species and causes ecosystem characteristics to converge. It has been speculated that these alterations contribute to loss of regional and global biodiversity, but so far most urban studies have assessed macro-organisms and reported mixed evidence for biodiversity loss. We studied five cities on three continents to assess the global convergence of urban soil microbial communities. We determined the extent to which communities of bacteria, archaea and fungi are geographically distributed, and to what extent urbanization acts as a filter on species diversity. We discovered that microbial communities in general converge, but the response differed among microbial domains; soil archaeal communities showed the strongest convergence, followed by fungi, while soil bacterial communities did not converge. Our data suggest that urban soil archaeal and bacterial communities are not vulnerable to biodiversity loss, whereas urbanization may be contributing to the global diversity loss of ectomycorrhizal fungi. Ectomycorrhizae decreased in both abundance and species richness under turf and ruderal land-uses. These data add to an emerging pattern of widespread suppression of ectomycorrhizal fungi by human land-uses that involve physical disruption of the soil, management of the plant community, or nutrient enrichment.

14.
J Microbiol Biol Educ ; 18(1)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28512513

RESUMO

Misconceptions, also known as alternate conceptions, about key concepts often hinder the ability of students to learn new knowledge. Concept inventories (CIs) are designed to assess students' understanding of key concepts, especially those prone to misconceptions. Two-tiered CIs include prompts that ask students to explain the logic behind their answer choice. Such two-tiered CIs afford an opportunity for faculty to explore the student thinking behind the common misconceptions represented by their choice of a distractor. In this study, we specifically sought to probe the misconceptions that students hold prior to beginning an introductory microbiology course (i.e., preconceptions). Faculty-learning communities at two research-intensive universities used the validated Host-Pathogen Interaction Concept Inventory (HPI-CI) to reveal student preconceptions. Our method of deep analysis involved communal review and discussion of students' explanations for their CI answer choice. This approach provided insight valuable for curriculum development. Here the process is illustrated using one question from the HPI-CI related to the important topic of antibiotic resistance. The frequencies with which students chose particular multiple-choice responses for this question were highly correlated between institutions, implying common underlying misconceptions. Examination of student explanations using our analysis approach, coupled with group discussions within and between institutions, revealed patterns in student thinking to the participating faculty. Similar application of a two-tiered concept inventory by general microbiology instructors, either individually or in groups, at other institutions will allow them to better understand student thinking related to key concepts in their curriculum.

15.
J Environ Qual ; 46(2): 247-254, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28380563

RESUMO

Precipitation and irrigation induce pulses of NO emissions in agricultural soils, but the magnitude, duration, and timing of these pulses remain uncertain. This uncertainty makes it difficult to accurately extrapolate emissions from unmeasured time periods between chamber sampling events. Therefore, we developed a modeling protocol to predict NO emissions from data collected daily for 7 d after wetting events. Within a cover crop-based corn ( L.) production system in Beltsville, MD, we conducted the 7-d time series during four time periods representing a range of corn growth stages in 2013 and 2014. Treatments included mixtures and monocultures of grass and legume cover crops that were fertilized with pelletized poultry litter or urea-ammonium nitrate solution (9-276 kg N ha). Most fluxes did not exhibit the expected exponential decay over time (82%); therefore, cumulative emissions were calculated using trapezoidal integration over 7 d after the wetting event. Cumulative 7-d emissions were well correlated with single point gas fluxes on the second day after a wetting event using a generalized linear mixed model (ln[emissions] = 0.809∙ln[flux] + 2.47). Soil chemical covariates before or after a wetting event were weakly associated with cumulative emissions. The ratio of dissolved organic C to total inorganic N was negatively correlated with cumulative emissions ( = 0.23-0.29), whereas nitrate was positively correlated with cumulative emissions ( = 0.23-0.33). Our model is an innovative approach that is calibrated using site-specific time series data, which may then be used to estimate short-term NO emissions after wetting events using only a single flux measurement.


Assuntos
Óxido Nitroso/análise , Solo/química , Agricultura , Produtos Agrícolas , Nitrogênio
16.
Appl Environ Microbiol ; 83(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213545

RESUMO

Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (µ = 3.3) than those at Catoctin MP (µ = 0.8) and at Mt. Rogers NRA (µ = 0.4). All salamanders tested negative for B. dendrobatidis Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective role for these salamanders.IMPORTANCE Amphibians harbor skin bacteria that can kill an amphibian fungal pathogen, Batrachochytrium dendrobatidis Some amphibians die from B. dendrobatidis infection, whereas others do not. The bacteria that can kill B. dendrobatidis, called anti-B. dendrobatidis bacteria, are thought to influence the B. dendrobatidis infection outcome for the amphibian. Yet how anti-B. dendrobatidis bacterial species vary among amphibian species and populations is unknown. We determined the distribution of anti-B. dendrobatidis bacterial species among three salamander species (n = 61) sampled at three localities. We identified 50 unique anti-B. dendrobatidis bacterial species and found that all of the tested salamanders were negative for B. dendrobatidis Five anti-B. dendrobatidis bacterial species were commonly detected, suggesting a stable, functional association with these salamanders. The number of anti-B. dendrobatidis bacteria per individual varied among localities but not among co-occurring salamander species, demonstrating that environment is more influential than host factors in structuring the anti-B. dendrobatidis bacterial community. These anti-B. dendrobatidis bacteria may serve a protective function for their salamander hosts.


Assuntos
Antibiose , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Quitridiomicetos/crescimento & desenvolvimento , Pele/microbiologia , Urodelos/microbiologia , Animais , Região dos Apalaches , Bactérias/genética , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Florestas , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Appl Microbiol Biotechnol ; 100(22): 9795-9806, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717964

RESUMO

The methanogenic communities in alternative inocula and their potential to increase CH4 production in mesophilic and psychrophilic dairy manure-based anaerobic digesters were examined. Quantitative-PCR and terminal restriction fragment length polymorphism (T-RFLP) profiles were used to determine archaeal and methanogenic community changes when three inocula (wetland sediment (WS), landfill leachate (LL), and mesophilic digestate (MD)) were incubated at 15, 25, and 35 °C for 91 and 196 days. After each incubation period, the inocula were used in biochemical methane potential (BMP) tests at the incubation temperatures. There was no significant correlation between inoculum mcrA gene copy numbers and CH4 produced in BMP tests, suggesting that population size was not a distinguishing characteristic for predicting CH4 production. Archaeal composition in LL and WS reactors generally converged with MD reactors after incubation at 25 and 35 °C for 196 days. These MD reactors had high relative abundance of TRF 302, likely Methanosaetaceae, and low acetic acid (0.62-1.61 mM). At 15 °C incubation, most reactors were associated with high acetic acid (1.61-133.6 mM) and dominated by TRF 199, likely Methanosarcinaceae. The LL reactor incubated at 25 °C for 91 days had higher relative abundance of TRF 199 and produced significantly higher CH4 than WS and MD reactors in BMP test. In the future, it may be possible to create enrichment cultures that favor particular methanogens and use them as inoculum to benefit digesters at low mesophilic temperatures. Our data provides evidence that tailoring the archaeal community could benefit digesters operating under different conditions.


Assuntos
Archaea/classificação , Archaea/metabolismo , Biota , Esterco/microbiologia , Metano/metabolismo , Anaerobiose , Archaea/genética , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase em Tempo Real , Temperatura , Fatores de Tempo
18.
Artigo em Inglês | MEDLINE | ID: mdl-26030685

RESUMO

The microbiological impact of zero-valent iron used in the remediation of groundwater was investigated by exposing a trichloroethylene-degrading anaerobic microbial community to two types of iron nanoparticles. Changes in total bacterial and archaeal population numbers were analyzed using qPCR and were compared to results from a blank and negative control to assess for microbial toxicity. Additionally, the results were compared to those of samples exposed to silver nanoparticles and iron filings in an attempt to discern the source of toxicity. Statistical analysis revealed that the three different iron treatments were equally toxic to the total bacteria and archaea populations, as compared with the controls. Conversely, the silver nanoparticles had a limited statistical impact when compared to the controls and increased the microbial populations in some instances. Therefore, the findings suggest that zero-valent iron toxicity does not result from a unique nanoparticle-based effect.


Assuntos
Archaea/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Água Subterrânea/química , Água Subterrânea/microbiologia , Ferro/toxicidade , Nanopartículas/toxicidade , Tricloroetileno/química , Maryland , Microbiologia do Solo
19.
J Microbiol Methods ; 115: 112-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26055315

RESUMO

We tested a method of estimating the activity of detectable individual bacterial and archaeal OTUs within a community by calculating ratios of absolute 16S rRNA to rDNA copy numbers. We investigated phylogenetically coherent patterns of activity among soil prokaryotes in non-growing soil communities. 'Activity ratios' were calculated for bacteria and archaea in soil sampled from a tropical rainforest and temperate agricultural field and incubated for one year at two levels of moisture availability and with and without carbon additions. Prior to calculating activity ratios, we corrected the relative abundances of OTUs to account for multiple copies of the 16S gene per genome. Although necessary to ensure accurate activity ratios, this correction did not change our interpretation of differences in microbial community composition across treatments. Activity ratios in this study were lower than those previously published (0.0003-210, logarithmic mean=0.24), suggesting significant extracellular DNA preservation. After controlling for the influence of individual incubation jars, significant differences in activity ratios between all members of each phylum were observed. Planctomycetes and Firmicutes had the highest activity ratios and Crenarchaeota had the lowest activity overall. Our results suggest that greater caution should be taken in interpreting soil microbial community data derived from extracted DNA. Indirect extraction methods may be useful in ensuring that microbes identified from extracellular DNA are not erroneously interpreted as components of an active microbial community.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , DNA Arqueal/química , DNA Bacteriano/química , DNA Ribossômico/química , RNA Ribossômico 16S/química , Microbiologia do Solo , Archaea/química , Archaea/classificação , Archaea/genética , Bactérias/química , Bactérias/classificação , Bactérias/genética , DNA Arqueal/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Solo/química
20.
Appl Environ Microbiol ; 81(10): 3482-91, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25769832

RESUMO

Restored wetland soils differ significantly in physical and chemical properties from their natural counterparts even when plant community compositions are similar, but effects of restoration on microbial community composition and function are not well understood. Here, we investigate plant-microbe relationships in restored and natural tidal freshwater wetlands from two subestuaries of the Chesapeake Bay. Soil samples were collected from the root zone of Typha latifolia, Phragmites australis, Peltandra virginica, and Lythrum salicaria. Soil microbial composition was assessed using 454 pyrosequencing, and genes representing bacteria, archaea, denitrification, methanogenesis, and methane oxidation were quantified. Our analysis revealed variation in some functional gene copy numbers between plant species within sites, but intersite comparisons did not reveal consistent plant-microbe trends. We observed more microbial variations between plant species in natural wetlands, where plants have been established for a long period of time. In the largest natural wetland site, sequences putatively matching methanogens accounted for ∼17% of all sequences, and the same wetland had the highest numbers of genes coding for methane coenzyme A reductase (mcrA). Sequences putatively matching aerobic methanotrophic bacteria and anaerobic methane-oxidizing archaea (ANME) were detected in all sites, suggesting that both aerobic and anaerobic methane oxidation are possible in these systems. Our data suggest that site history and edaphic features override the influence of plant species on microbial communities in restored wetlands.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Água Doce/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Desnitrificação , Metano/metabolismo , Filogenia , Poaceae/classificação , Poaceae/crescimento & desenvolvimento , Solo/química , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...