Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(33): 18102-18111, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34397066

RESUMO

The separation of linear from branched hydrocarbons is often required in many situations. There are several methods through which they can be separated but none provides a very high degree of purity or works without considerable expenditure of energy. Recently, a novel method was proposed to separate a mixture of neopentane and n-pentane. The present work demonstrates that the method can be used for separating other mixtures of hydrocarbons as well, by attempting the separation of a mixture of 2,2-dimethyl butane and n-pentane. Intermolecular interaction potentials have been modified to reproduce the experimental heat of adsorption and diffusivity of 2,2-dimethyl butane and n-pentane in zeolite NaY. The method involves choosing the correct host zeolite or other porous solids and introducing hot zones at appropriate positions. This result drives both the components to the opposite ends of the zeolite column, thus leading to separation. The achieved separation factors are much higher than what can be obtained with the help of existing methods. Different properties have been computed to understand the process involved in the separation of the mixture. The approach employed here uses very little energy for separation, making it suitable for green chemistry.

3.
J Chem Phys ; 153(24): 244503, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33380104

RESUMO

In some binary alloys, the solute exhibits high or fast diffusion with low activation energy. In order to understand this, diffusion of solute atoms through a lattice of body centered cubic solvent atoms has been investigated with molecular dynamics technique. Surprisingly, solutes exhibit two distinct diffusivity maxima. Solutes migrate through the lattice mainly by diffusion from one tetrahedral void to another (tt) and, less frequently, by diffusion from a tetrahedral to an octahedral void (to) or reverse jumps (ot). Solutes with maximum diffusivity show smooth decay of the velocity autocorrelation function without backscattering. The average force on the solutes of various diameters correlates well with the position and intensity of the diffusivity maxima exhibited by the solutes. This suggests that the explanation for the diffusivity maxima lies in the levitation effect, which suggests a lowered force on the solute at the diffusivity maxima. The activation energy computed for the solutes of different sizes confirms this interpretation as it is lower for the solutes at the diffusivity maxima. Calculations with blocking of octahedral voids show that the second diffusivity maximum has significant contributions from the to diffusion path. These findings obtained here explain the fast solute/impurity atom diffusivity and low activation energies seen in the literature in many of the alloys, such as Co in γ-U and ß-Zr, Cu in Pr, or Au in Th.

4.
Phys Rev Lett ; 124(25): 255901, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639794

RESUMO

A radically different approach for separation of molecular mixtures is proposed. A judicious combination of levitation effect observed in zeolites with a counter intuitive Landauer blow torch effect provides driving forces for the two components of the mixture to move in opposite directions. Using nonequilibrium Monte Carlo simulations, we illustrate the efficacy of the method for separating real mixtures of both linear n-pentane and its branched isomer, neopentane, and linear n-hexane and its branched isomer, 2,2-dimethylbutane. The method yields several orders of magnitude improvement in separation factor and relative energy efficiency by using submicron zeolite column. The extremely high purity of the resulting single components makes the method best suited for green chemistry.

5.
J Chem Phys ; 146(16): 164502, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28456210

RESUMO

While most of the existing theoretical and simulation studies have focused on simple, spherical, halide and alkali ions, many chemically, biologically, and industrially relevant electrolytes involve complex non-spherical polyatomic ions like nitrate, chlorate, and sulfate to name only a few. Interestingly, some polyatomic ions in spite of being larger in size show anomalously high diffusivity and therefore cause a breakdown of the venerable Stokes-Einstein (S-E) relation between the size and diffusivity. Here we report a detailed analysis of the dynamics of anions in aqueous potassium nitrate (KNO3) and aqueous potassium acetate (CH3COOK) solutions. The two ions, nitrate (NO3-) and acetate (CH3CO2-), with their similar size show a large difference in diffusivity values. We present evidence that the translational motion of these polyatomic ions is coupled to the rotational motion of the ion. We show that unlike the acetate ion, nitrate ion with a symmetric charge distribution among all periphery oxygen atoms shows a faster rotational motion with large amplitude rotational jumps which enhances its translational motion due to translational-rotational coupling. By creating a family of modified-charge model systems, we have analysed the rotational motion of asymmetric polyatomic ions and the contribution of it to the translational motion. These model systems help clarifying and establishing the relative contribution of rotational motion in enhancing the diffusivity of the nitrate ion over the value predicted by the S-E relation and also over the other polyatomic ions having asymmetric charge distribution like the acetate ion. In the latter case, reduced rotational motion results in lower diffusivity values than those with symmetric charge distribution. We propose translational-rotational coupling as a general mechanism of the breakdown of the S-E relation in the case of polyatomic ions.

6.
J Chem Phys ; 145(23): 234502, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27984871

RESUMO

A nitrate ion (NO3-) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO3- is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the coupled reorientational jump dynamics of solute and solvent molecules.

7.
J Chem Phys ; 142(12): 124502, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25833591

RESUMO

A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies.

8.
J Phys Chem B ; 113(38): 12635-8, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19715351

RESUMO

Neutron scattering measurements and molecular dynamics simulations have been carried out on the three isomers of pentane (neopentane (neo), isopentane (iso), and n-pentane (n-)) adsorbed in zeolite NaY. The results show that the self-diffusivity of these isomers follow the order Ds(neo)>Ds(iso)>Ds(n-), suggesting that the larger the cross section perpendicular to the molecular axis of the isomer, the higher the self-diffusivity. This counterintuitive result provides the first direct experimental evidence in support of the mutual cancellation of forces on the diffusant leading to a diffusivity maximum and is often referred to as the levitation effect. We also provide a direct confirmation of the experimental observations by Kemball (Adv. Catal. 1950, 2, 233) by calculating the entropy.

9.
J Am Chem Soc ; 125(52): 16192-3, 2003 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-14692752

RESUMO

A classical Lennard-Jones potential is derived from a fit to the ab initio energies obtained from an all-electron mixed-basis calculation for methane in zeolite LTA. The potential predicts the heat of adsorption, adsorption isotherm, and self-diffusivity of methane in excellent agreement with experiment. This study suggests, for the first time, that ab initio energies-in addition to experimental data-can form a good basis for derivation of accurate classical potentials between organic and inorganic elements.

10.
J Am Chem Soc ; 125(23): 7116-23, 2003 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-12783565

RESUMO

Previous work on monatomic spherical sorbates has shown the existence of an anomalous peak in self-diffusivity (D) when plotted as a function of size of the diffusant. Molecular dynamics studies on linear molecules of different lengths l in zeolite NaY at 140 and 200 K are reported. It is seen that there is a peak in D as a function of l, suggesting that the levitation effect exists for linear molecules, the simplest member of polyatomics. This is confirmed by the lowering of the activation energy for the molecule whose length l exhibits highest D. Related quantities of interest such as the guest-host interaction energy and preexponential factor are discussed.

11.
J Am Chem Soc ; 124(15): 3828-9, 2002 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-11942809

RESUMO

Most inorganic solids are made up of octahedral and tetrahedral units interconnected to give an infinite framework. Use of computer simulation to study these materials has not been as prevalent as in the organic or biomolecules. Na(1+x)Zr(2)Si(x)P(3-x)O(12) is a typical inorganic solid with ZrO(6) octahedra and (Si/P)O(4) tetrahedra which are shown along with a few Na(+) sites marked M1, M2, and M3. We report here a full interionic potential which reproduces the structure and conductivity of these solids. This augurs well for the study of other inorganic solids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...