Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e22028, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034731

RESUMO

This study was based on the experimental performance evaluation of a wood polymer composite (WPC) that was synthesized by incorporating untreated and treated rice husk (RH) fibers into a polypropylene random copolymer matrix. The submicron-scale RH fibers were alkali-treated to modify the surface and introduce new functional groups in the WPC. A compatibilizer (maleic anhydride) and a thermos-mechanical properties modifier (polypropylene grafted with 30 % glass fiber) were used in the WPC. The effects of untreated and treated RH on the WPC panels were studied using FESEM, FTIR, and microscope images. A pin-on-disk setup was used to investigate the bulk tribological properties of PPRC and WPC. The complex relationship between the friction coefficient of different loading of RH fibers in the WPC, as a function of sliding distance, was analyzed along with the temperature and morphology of the surface. It was observed that untreated RH acted as a friction modifier, while treated RH acted as a solid lubricant. Microhardness was calculated using the QCSM module on nanoindentation. It was found that untreated RH led to an increase in microhardness, while treated RH caused a decrease in hardness compared to PPRC.

2.
Materials (Basel) ; 15(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35269186

RESUMO

Nanoindentation is widely used to investigate the surface-mechanical properties of biocomposites. In this study, polypropylene random copolymer (PPRC) and biowaste rice husk (BRH) were used as the main raw materials, and glass-fiber-reinforced polypropylene and talc were also used with BRH to enhance the mechanical characterization of the biocomposites. The interfacial bonding between the polymer and the rice husk was increased by treating them with maleic anhydride and NaOH, respectively. The results obtained from the nanoindentation indicated that the plastic behavior of the biocomposites was prominent when untreated BRH was used and vice versa. The modulus and hardness of the biocomposite improved by 44.8% and 54.8% due to the neat PPRC, respectively. The tribological properties were studied based on the hardness-to-modulus ratio and it was found that BRH- and talc-based biocomposites were better than other samples in terms of low friction and wear rate. The creep measurements showed that untreated rice husk biocomposite exhibited high resistance to load deformation.

3.
Materials (Basel) ; 13(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167403

RESUMO

In this work, the effects of chemical pretreatment and different fiber loadings on mechanical properties of the composites at the sub-micron scale were studied through nanoindentation. The composites were prepared by incorporating choline chloride (ChCl) pretreated rice husk waste (RHW) in low-density polyethylene (LDPE) using melt processing, followed by a thermal press technique. Nanoindentation experiments with quasi continuous stiffness mode (QCSM) were performed on the surface of produced composites with varying content of pretreated RHW (i.e., 10, 15, and 20 wt.%). Elastic modulus, hardness, and creep properties of fabricated composites were measured as a function of contact depth. The results confirmed the appreciable changes in hardness, elastic modulus, and creep rate of the composites. Compliance curves indicated that the composite having 20 wt.% of pretreated RHW loading was harder compared to that of the pure LDPE and other composite samples. The values of elastic modulus and hardness of the composite containing 20 wt.% pretreated RHW were increased by 4.1% and 24% as compared to that of the pure LDPE, respectively. The creep rate of 42.65 nm/s and change in depth of 650.42 nm were also noted for the composite with RHW loading of 20 wt.%, which showed the substantial effect of holding time at an applied peak load of 100 mN. We believe that the developed composite could be a promising biodegradable packaging material due to its good tribo-mechanical performance.

4.
Polymers (Basel) ; 12(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252357

RESUMO

Nano-indentation, a depth sensing technique, is a useful and exciting tool to investigate the surface mechanical properties of a wide range of materials, particularly polymers. Knowledge of the influence of experimental conditions employed during nano-indentation on the resultant nano-mechanical response is very important for the successful design of engineering components with appropriate surface properties. In this work, nano-indentation experiments were carried out by selecting various values of frequency, amplitude, contact depth, strain rate, holding time, and peak load. The results showed a significant effect of amplitude, frequency, and strain rate on the hardness and modulus of the considered polymer, ultrahigh molecular weight polyethylene (UHMWPE). Load-displacement curves showed a shift towards the lower indentation depths along with an increase in peak load by increasing the indentation amplitude or strain rate. The results also revealed the strong dependence of hardness and modulus on the holding time. The experimental data of creep depth as a function of holding time was successfully fitted with a logarithmic creep model (R2 ≥ 0.98). In order to remove the creeping effect and the nose problem, recommended holding times were proposed for the investigated polymer as a function of different applied loads.

5.
Mater Sci Eng C Mater Biol Appl ; 97: 932-953, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678982

RESUMO

Bigels are interesting semisolid formulations with better properties for different applications such as cosmetics and pharmaceutical systems. Due to the mixing of two phases of different nature (polar and apolar), bigels possess some interesting features like ability to deliver hydrophilic and hydrophobic drugs, better spreadability and water washability, improved permeability of drugs, enhanced hydration of stratum corneum and ability to manipulate the drug release rate. The main objective of this review article is to provide a thorough insight into the important characteristics of bigels together with the discussion on modelling of bigel systems to relate their properties with individual constituents and different parameters. Moreover, some important applications of bigels are also discussed by considering some examples from the literature.


Assuntos
Géis/química , Modelos Teóricos , Cosméticos , Portadores de Fármacos/química , Módulo de Elasticidade , Condutividade Elétrica , Hidrogéis/química , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...