Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 159: 106741, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105109

RESUMO

Mental disorders are rapidly increasing each year and have become a major challenge affecting the social and financial well-being of individuals. There is a need for phenotypic characterization of psychiatric disorders with biomarkers to provide a rich signature for Major Depressive Disorder, improving the understanding of the pathophysiological mechanisms underlying these mental disorders. This comprehensive review focuses on depression and relapse detection modalities such as self-questionnaires, audiovisuals, and EEG, highlighting noteworthy publications in the last ten years. The article concentrates on the literature that adopts machine learning by audiovisual and EEG signals. It also outlines preprocessing, feature extraction, and public datasets for depression detection. The review concludes with recommendations that will help improve the reliability of developed models and the determinism of computational intelligence-based systems in psychiatry. To the best of our knowledge, this survey is the first comprehensive review on depression and relapse prediction by self-questionnaires, audiovisual, and EEG-based approaches. The findings of this review will serve as a useful and structured starting point for researchers studying clinical and non-clinical depression recognition and relapse through machine learning-based approaches.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico , Depressão/diagnóstico , Reprodutibilidade dos Testes , Aprendizado de Máquina , Eletroencefalografia
2.
Sensors (Basel) ; 21(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34696146

RESUMO

Diabetic retinopathy (DR) is a diabetes disorder that disturbs human vision. It starts due to the damage in the light-sensitive tissues of blood vessels at the retina. In the beginning, DR may show no symptoms or only slight vision issues, but in the long run, it could be a permanent source of impaired vision, simply known as blindness in the advanced as well as in developing nations. This could be prevented if DR is identified early enough, but it can be challenging as we know the disease frequently shows rare signs until it is too late to deliver an effective cure. In our work, we recommend a framework for severity grading and early DR detection through hybrid deep learning Inception-ResNet architecture with smart data preprocessing. Our proposed method is composed of three steps. Firstly, the retinal images are preprocessed with the help of augmentation and intensity normalization. Secondly, the preprocessed images are given to the hybrid Inception-ResNet architecture to extract the vector image features for the categorization of different stages. Lastly, to identify DR and decide its stage (e.g., mild DR, moderate DR, severe DR, or proliferative DR), a classification step is used. The studies and trials have to reveal suitable outcomes when equated with some other previously deployed approaches. However, there are specific constraints in our study that are also discussed and we suggest methods to enhance further research in this field.


Assuntos
Retinopatia Diabética , Cegueira , Retinopatia Diabética/diagnóstico por imagem , Fundo de Olho , Humanos , Projetos de Pesquisa , Retina/diagnóstico por imagem
3.
Sensors (Basel) ; 21(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502859

RESUMO

The Internet of Underwater Things (IoUTs) enables various underwater objects be connected to accommodate a wide range of applications, such as oil and mineral exportations, disaster detection, and tracing tracking systems. As about 71% of our earth is covered by water and one-fourth of the population lives around this, the IoUT expects to play a vital role. It is imperative to pursue reliable communication in this vast domain, as human beings' future depends on water activities and resources. Therefore, there is a urgent need for underwater communication to be reliable, end-to-end secure, and collision/void node-free, especially when the routing path is established between sender and sonobuoys. The foremost issue discussed in this area is its routing path, which has high security and bandwidth without simultaneous multiple reflections. Short communication range is also a problem (because of an absence of inter-node adjustment); the acoustic signals have short ranges and maximum-scaling factors that cause a delay in communication. Therefore, we proposed Rotational Orbit-Based Inter Node Adjustment (ROBINA) with variant Path-Adjustment (PA-ROBINA) and Path Loss (PL-ROBINA) for IoUTs to achive reliable communication between the sender and sonobuoys. Additionally, the mathematical-based path loss model was discussed to cover the PL-ROBINA strategy. Extensive simulations were conducted with various realistic parameters and the results were compared with state-of-the-art routing protocols. Extensive simulations proved that the proposed routing scheme outperformed different realistic parameters; for example, packet transmission 45% increased with an average end-to-end delay of only 0.3% respectively. Furthermore, the transmission loss and path loss (measured in dB) were 25 and 46 dB, respectively, compared with other algorithms, for example, EBER2 54%, WDFAD-BDR 54%, AEDG 49%, ASEGD 55%, AVH-AHH-VBF 54.5%, and TANVEER 39%, respectively. In addition, the individual parameters with ROBINA and TANVEER were also compared, in which ROBINA achieved a 98% packet transmission ratio compared with TANVEER, which was only 82%.


Assuntos
Internet das Coisas , Tecnologia sem Fio , Acústica , Redes de Comunicação de Computadores , Humanos , Órbita
4.
Sensors (Basel) ; 21(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063953

RESUMO

The Internet of Things (IoT) is an emerging technology in underwater communication because of its potential to monitor underwater activities. IoT devices enable a variety of applications such as submarine and navy defense systems, pre-disaster prevention, and gas/oil exploration in deep and shallow water. The IoT devices have limited power due to their size. Many routing protocols have been proposed in applications, as mentioned above, in different aspects, but timely action and energy make these a challenging task for marine research. Therefore, this research presents a routing technique with three sub-sections, Tri-Angular Nearest Vector-Based Energy Efficient Routing (TANVEER): Layer-Based Adjustment (LBA-TANVEER), Data Packet Delivery (DPD-TANVEER), and Binary Inter Nodes (BIN-TANVEER). In TANVEER, the path is selected between the source node and sonobuoys by computing the angle three times with horizontal, vertical, and diagonal directions by using the nearest vector-based approach to avoid the empty nodes/region. In order to deploy the nodes, the LBA-TANVEER is used. Furthermore, for successful data delivery, the DPD-TANVEER is responsible for bypassing any empty nodes/region occurrence. BIN-TANVEER works with new watchman nodes that play an essential role in the path/data shifting mechanism. Moreover, achievable empty regions are also calculated by linear programming to minimize energy consumption and throughput maximization. Different evaluation parameters perform extensive simulation, and the coverage area of the proposed scheme is also presented. The simulated results show that the proposed technique outperforms the compared baseline scheme layer-by-layer angle-based flooding (L2-ABF) in terms of energy, throughput, Packet Delivery Ratio (PDR) and a fraction of empty regions.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33809665

RESUMO

COVID-19 syndrome has extensively escalated worldwide with the induction of the year 2020 and has resulted in the illness of millions of people. COVID-19 patients bear an elevated risk once the symptoms deteriorate. Hence, early recognition of diseased patients can facilitate early intervention and avoid disease succession. This article intends to develop a hybrid deep neural networks (HDNNs), using computed tomography (CT) and X-ray imaging, to predict the risk of the onset of disease in patients suffering from COVID-19. To be precise, the subjects were classified into 3 categories namely normal, Pneumonia, and COVID-19. Initially, the CT and chest X-ray images, denoted as 'hybrid images' (with resolution 1080 × 1080) were collected from different sources, including GitHub, COVID-19 radiography database, Kaggle, COVID-19 image data collection, and Actual Med COVID-19 Chest X-ray Dataset, which are open source and publicly available data repositories. The 80% hybrid images were used to train the hybrid deep neural network model and the remaining 20% were used for the testing purpose. The capability and prediction accuracy of the HDNNs were calculated using the confusion matrix. The hybrid deep neural network showed a 99% classification accuracy on the test set data.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Redes Neurais de Computação , Radiografia Torácica , SARS-CoV-2 , Tomografia Computadorizada por Raios X , Raios X
6.
Comput Methods Programs Biomed ; 202: 106007, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33657466

RESUMO

Mental disorders represent critical public health challenges as they are leading contributors to the global burden of disease and intensely influence social and financial welfare of individuals. The present comprehensive review concentrate on the two mental disorders: Major depressive Disorder (MDD) and Bipolar Disorder (BD) with noteworthy publications during the last ten years. There is a big need nowadays for phenotypic characterization of psychiatric disorders with biomarkers. Electroencephalography (EEG) signals could offer a rich signature for MDD and BD and then they could improve understanding of pathophysiological mechanisms underling these mental disorders. In this review, we focus on the literature works adopting neural networks fed by EEG signals. Among those studies using EEG and neural networks, we have discussed a variety of EEG based protocols, biomarkers and public datasets for depression and bipolar disorder detection. We conclude with a discussion and valuable recommendations that will help to improve the reliability of developed models and for more accurate and more deterministic computational intelligence based systems in psychiatry. This review will prove to be a structured and valuable initial point for the researchers working on depression and bipolar disorders recognition by using EEG signals.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtorno Bipolar/diagnóstico , Transtorno Depressivo Maior/diagnóstico , Eletroencefalografia , Humanos , Redes Neurais de Computação , Reprodutibilidade dos Testes
7.
Entropy (Basel) ; 22(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33279915

RESUMO

In this study, a multistage segmentation technique is proposed that identifies cancerous cells in prostate tissue samples. The benign areas of the tissue are distinguished from the cancerous regions using the texture of glands. The texture is modeled based on wavelet packet features along with sample entropy values. In a multistage segmentation process, the mean-shift algorithm is applied on the pre-processed images to perform a coarse segmentation of the tissue. Wavelet packets are employed in the second stage to obtain fine details of the structured shape of glands. Finally, the texture of the gland is modeled by the sample entropy values, which identifies epithelial regions from stroma patches. Although there are three stages of the proposed algorithm, the computation is fast as wavelet packet features and sample entropy values perform robust modeling for the required regions of interest. A comparative analysis with other state-of-the-art texture segmentation techniques is presented and dice ratios are computed for the comparison. It has been observed that our algorithm not only outperforms other techniques, but, by introducing sample entropy features, identification of cancerous regions of tissues is achieved with 90% classification accuracy, which shows the robustness of the proposed algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...