Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Prog ; 106(2): 368504231172617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37254509

RESUMO

Wire coating is widely used for electrical insulation to protect the wire from electric shock, prevent electrical leakage, and ensure that the electrical current flows smoothly. In this investigation, a pressurized coating die is used to explore the PTT fluid as a polymer material for wire in a magnetic field. The flow field, flow rate, temperature profile, thickness of the wire coating, volume flow rate, and shear stress are all given exact solutions. Graphs were used to illustrate the effects of certain important technical parameters, including flow rate, wire coating thickness, shear stress, and pressure gradient. It has been noted that as the values of X, Deborah number, and ratio of radii are improved, the volume and thickness of the coated wire rise. The Deborah number has a higher volume flow than the X and radii ratios. A reference to existing literature is made in order to support the validity of the current study.

3.
Comput Math Methods Med ; 2022: 3599827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36404912

RESUMO

Human immunodeficiency virus (HIV) infection affects the immune system, particularly white blood cells known as CD4+ T-cells. HIV destroys CD4+ T-cells and significantly reduces a human's resistance to viral infectious diseases as well as severe bacterial infections, which can lead to certain illnesses. The HIV framework is defined as a system of nonlinear first-order ordinary differential equations, and the innovative Galerkin technique is used to approximate the solutions of the model. To validate the findings, solve the model employing the Runge-Kutta (RK) technique of order four. The findings of the suggested techniques are compared with the results obtained from conventional schemes such as MuHPM, MVIM, and HPM that exist in the literature. Furthermore, the simulations are performed with different time step sizes, and the accuracy is measured at various time intervals. The numerical computations clearly demonstrate that the Galerkin scheme, in contrast to the Runge-Kutta scheme, provides incredibly precise solutions at relatively large time step sizes. A comparison of the solutions reveals that the obtained results through the Galerkin scheme are in fairly good agreement with the RK4 scheme in a given time interval as compared to other conventional schemes. Moreover, having performed various numerical tests for assessing the efficiency and computational cost (in terms of time) of the suggested schemes, it is observed that the Galerkin scheme is noticeably slower than the Runge-Kutta scheme. On the other hand, this work is also concerned with the path tracking and damped oscillatory behaviour of the model with a variable supply rate for the generation of new CD4+ T-cells (based on viral load concentration) and the HIV infection incidence rate. Additionally, we investigate the influence of various physical characteristics by varying their values and analysing them using graphs. The investigations indicate that the lateral system ensured more accurate predictions than the previous model.


Assuntos
Infecções por HIV , Humanos , Carga Viral , Linfócitos T CD4-Positivos
4.
ACS Omega ; 7(37): 33432-33442, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157759

RESUMO

The growth of hybrid nanofluids can be connected to their enhanced thermal performance as pertains to the dynamics of automobile coolant among others. In addition to that, the thermal characteristics of water-based nanofluids carrying three different types of nanoparticles are incredible. Keeping in view this new idea, the current investigation explores ternary hybrid nanofluid flow over a stretching sheet. Joule heating and viscous dissipation are addressed in the heat equation. Three distinct kinds of nanoparticles, namely, magnesium oxide, copper, and MWCNTs, are suspended in water to form a ternary hybrid nanofluid with the combination MgO-Cu-MWCNTs-H2O. To stabilize the flow of the ternary hybrid nanofluid, transverse magnetic and electric fields have been considered in the fluid model. The production of entropy has been analyzed for the modeled problem. A comparative study for ternary, hybrid, and traditional nanofluids has also been carried out by sketching statistical charts. The equations that govern the problem are shifted to dimension-free format by employing transformable variables, and then they are solved by the homotopy analysis method (HAM). It has been revealed in this work that the flow of fluid opposes by magnetic parameter and supports by electric field the volumetric fraction of ternary hybrid nanofluid, while thermal profiles are gained by the growing values of these parameters. Boosting values of the electric field, magnetic parameters, and Eckert number support the Bejan number and oppose the production of entropy. Statistically, it has been established in this work that a ternary hybrid nanofluid has a higher thermal conductivity than hybrid or traditional nanofluids.

5.
Comput Intell Neurosci ; 2022: 1200611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072714

RESUMO

In this paper, the Ridge Regression method is employed to estimate the shape parameter of the Lomax distribution (LD). In addition to that, the approaches of both classical and Bayesian are considered with several loss functions as a squared error (SELF), Linear Exponential (LLF), and Composite Linear Exponential (CLLF). As far as Bayesian estimators are concerned, informative and noninformative priors are used to estimate the shape parameter. To examine the performance of the Ridge Regression method, we compared it with classical estimators which included Maximum Likelihood, Ordinary Least Squares, Uniformly Minimum Variance Unbiased Estimator, and Median Method as well as Bayesian estimators. Monte Carlo simulation compares these estimators with respect to the Mean Square Error criteria (MSE's). The result of the simulation mentioned that the Ridge Regression method is promising and can be used in a real environment. where it revealed better performance the than Ordinary Least Squares method for estimating shape parameter.


Assuntos
Projetos de Pesquisa , Teorema de Bayes , Simulação por Computador , Análise dos Mínimos Quadrados , Método de Monte Carlo
6.
Sci Rep ; 12(1): 15577, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114201

RESUMO

Due to their unique microstructures, micropolar fluids have attracted enormous attention for their industrial applications, including convective heat and mass transfer polymer production and rigid and random cooling particles of metallic sheets. The thermodynamical demonstration is an integral asset for anticipating the ideal softening of heat transfer. This is because there is a decent connection between mathematical and scientific heat transfers through thermodynamic anticipated outcomes. A model is developed under the micropolar stream of a non-Newtonian (3rd grade) liquid in light of specific presumptions. Such a model is dealt with by summoning likeness answers for administering conditions. The acquired arrangement of nonlinear conditions is mathematically settled using the fourth-fifth order Runge-Kutta-Fehlberg strategy. The outcomes of recognized boundaries on liquid streams are investigated in subtleties through the sketched realistic images. Actual amounts like Nusselt number, Sherwood number, and skin-part coefficient are explored mathematically by tables. It is observed that the velocity distribution boosts for larger values of any of [Formula: see text], [Formula: see text], and declines for larger [Formula: see text] and Hartmann numbers. Furthermore, the temperature distribution [Formula: see text] shows direct behavior with the radiation parameter and Eckert number, while, opposite behavior with Pr, and K. Moreover, the concentration distribution shows diminishing behavior as we put the higher value of the Brownian motion number.

7.
Micromachines (Basel) ; 14(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36677110

RESUMO

The present computational model is built to analyze the energy and mass transition rate through a copper and cobalt ferrite water-based hybrid nanofluid (hnf) flow caused by the fluctuating wavy spinning disk. Cobalt ferrite (CoFe2O4) and copper (Cu) nanoparticles (nps) are incredibly renowned in engineering and technological research due to their vast potential applications in nano/microscale structures, devices, materials, and systems related to micro- and nanotechnology. The flow mechanism has been formulated in the form of a nonlinear set of PDEs. That set of PDEs has been further reduced to the system of ODEs through resemblance replacements and computationally solved through the parametric continuation method. The outcomes are verified with the Matlab program bvp4c, for accuracy purposes. The statistical outputs and graphical evaluation of physical factors versus velocity, energy, and mass outlines are given through tables and figures. The configuration of a circulating disk affects the energy transformation and velocity distribution desirably. In comparison to a uniform interface, the uneven spinning surface augments energy communication by up to 15%. The addition of nanostructured materials (cobalt ferrite and copper) dramatically improves the solvent physiochemical characteristics. Furthermore, the upward and downward oscillation of the rotating disc also enhances the velocity and energy distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...