Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Breed ; 42(7): 32, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37313508

RESUMO

Chili peppers are important as vegetables and ornamental crops, because of the variety of fruit shapes and colors. Understanding of flower and fruit development in Capsicum is limited compared with closely related Solanaceae crops such as tomato. This study reports a novel malformed fruit mutant named malformed fruit-1 (maf-1), which was isolated from an ethyl methanesulfonate-induced mutant population of chili pepper. maf-1 exhibited homeotic changes in the floral bud, which were characterized by conversion of petals and stamens into sepal-like and carpel-like organs, respectively. In addition, the indeterminate formation of carpel-like tissue was observed. Genetic analysis demonstrated that the causative gene in maf-1 is a nonsense mutation in CaLFY. This is the first characterization of an lfy mutant in Capsicum. Unlike tomatoes, the CaLFY mutation did not affect the architecture of sympodial unit or flowering time but mainly affected the formation of flower organs. Gene expression analysis suggested that a nonsense mutation in CaLFY led to decreased expression of multiple class B genes, resulting in homeotic changes in the flower and fruit. This maf-1 mutant may provide new insights at the molecular level in understanding flower organ formation and the genetic manipulation of fruit shape in chili peppers. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01304-w.

2.
Plant Cell Rep ; 40(10): 1859-1874, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34283265

RESUMO

KEY MESSAGE: CAP biosynthesis in the pericarp of chili pepper fruits occurs with an ambiguous boundary in the placental septum and pericarp. Capsaicinoid (CAP) is a pungent ingredient of chili pepper fruits. Generally, CAP biosynthesis is limited to the placental septum of fruits, but it has been reported that its biosynthesis occurs even in the pericarp of some extremely pungent varieties, resulting in a substantial increase in total content. To examine the mechanism of CAP biosynthesis in the pericarp, comparative transcriptome analysis of a variety that produces CAP in the pericarp (MY) and a variety that does not (HB) was carried out. RNA-seq revealed that 2264 genes were differentially expressed in the MY pericarp compared with the HB pericarp. PCA analysis and GO enrichment analysis indicated that the MY pericarp has a gene expression profile more like placental septum than the HB pericarp. The gene expression of CAP biosynthesis-related genes in the MY pericarp changed coordinately with the placental septum during fruit development. In most Capsicum accessions including HB, the distribution of slender epidermal cells producing CAP was limited to the placental septum, and the morphological boundary between the placental septum and pericarp was clear. In some extremely pungent varieties such as MY, slender epidermal cells ranged from the placental septum to the pericarp region, and the pericarp was morphologically similar to the placental septum, such as the absence of large sub-epidermal cells and abundant spaces in the parenchymal tissue. Our data suggest that CAP biosynthesis in the pericarp occurred with an ambiguous boundary in the placental septum and pericarp. These findings contribute to further enhancement of CAP production in chili pepper fruits.


Assuntos
Capsaicina/metabolismo , Capsicum/anatomia & histologia , Capsicum/genética , Capsicum/metabolismo , Frutas/metabolismo , Capsicum/crescimento & desenvolvimento , Frutas/anatomia & histologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Proteínas de Plantas/genética , Análise de Componente Principal
3.
Plant Cell Rep ; 36(2): 267-279, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27873007

RESUMO

KEY MESSAGE: This research reveals that the up-regulated expression of multiple capsaicinoid biosynthetic genes in pericarp tissue leads to the elevation of total capsaicinoid content in chili pepper fruit. Capsaicinoids are health-functional compounds that are produced uniquely in chili pepper fruits. A high capsaicinoid level is one of the major parameters determining the commercial quality and health-promoting properties of chili peppers. To investigate the mechanisms responsible for its high contents, we compared an extremely pungent cultivar 'Trinidad Moruga Scorpion Yellow' (MY) with other cultivars of different pungency levels (Fushimi-amanaga, Takanotsume, Red Habanero). Capsaicinoid concentrations were markedly higher in MY fruit (23.9 mg/g DW) than in other pungent cultivars including 'Red Habanero' (HB) fruit (14.3 mg/g DW). Comparative analysis of MY and HB reveals that both cultivars accumulated similar capsaicinoid concentrations in the placental septum, with that in the HB pericarp (1.8 mg/g DW) being markedly lower than that in the placental septum (69.1 mg/g DW). The capsaicinoid concentration in HB fruit is dependent on the placental septum, as reported in other accessions. Therefore, even though placental septum tissue contains high capsaicinoid concentrations, those in the pericarp and seeds attenuated its total content. In contrast, the MY pericarp exhibited a markedly higher concentration (23.2 mg/g DW). A qRT-PCR analysis revealed that multiple capsaicinoid biosynthetic pathway genes (Pun1, pAMT, KAS, and BCAT) were strongly up-regulated in placental septum of pungent cultivars. The genes were expressed exclusively in the MY pericarp, but were barely detected in the pericarps of other pungent cultivars. Collectively, the present study indicates that the up-regulated expression of these genes not only in placental septum but also in pericarp plays an important role in driving capsaicinoid accumulation in the whole fruit.


Assuntos
Vias Biossintéticas/genética , Capsaicina/metabolismo , Capsicum/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Biomassa , Capsicum/citologia , Frutas/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...