Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893775

RESUMO

In the present review, the merits and demerits of machine learning (ML) in materials science are discussed, compared with first principles calculations (PDE (partial differential equations) model) and physical or phenomenological ODE (ordinary differential equations) model calculations. ML is basically a fitting procedure of pre-existing (experimental) data as a function of various factors called descriptors. If excellent descriptors can be selected and the training data contain negligible error, the predictive power of a ML model is relatively high. However, it is currently very difficult for a ML model to predict experimental results beyond the parameter space of the training experimental data. For example, it is pointed out that all-dislocation-ceramics, which could be a new type of solid electrolyte filled with appropriate dislocations for high ionic conductivity without dendrite formation, could not be predicted by ML. The merits and demerits of first principles calculations and physical or phenomenological ODE model calculations are also discussed with some examples of the flexoelectric effect, dielectric constant, and ionic conductivity in solid electrolytes.

2.
Ultrason Sonochem ; 106: 106893, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705083

RESUMO

The impact of hydrostatic pressure, commonly known as ambient or external pressure, on the phenomenon of sonochemistry and/or sonoluminescence has been extensively investigated through a multitude of experimental and computational studies, all of which have emphasized the crucial role played by this particular parameter. Numerous previous studies have successfully demonstrated the existence of an optimal static pressure for the occurrence of sonoluminescence and multi-bubble or single-bubble sonochemistry. However, despite these findings, a universally accepted value for this critical pressure has not yet been established. In addition, it has been found that the cavitation effect is completely inhibited when the static pressure is either too high or too low. This comprehensive review aims to delve into the primary experimental results and elucidate their significance in relation to hydrostatic pressure. We will then conduct an analysis of numerical calculations, focusing specifically on the influence of external pressure on single bubble sonochemistry. By delving into these calculations, we will be able to gain a deeper understanding of the experimental results and effectively interpret their implications.

3.
Materials (Basel) ; 17(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38255595

RESUMO

Based on the results of numerical calculations as well as those of some related experiments which are reviewed in the present paper, it is suggested that solid electrolytes filled with appropriate dislocations, which is called all-dislocation-ceramics, are expected to have considerably higher ionic conductivity and higher fracture toughness than those of normal solid electrolytes. Higher ionic conductivity is due to the huge ionic conductivity along dislocations where the formation energy of vacancies is considerably lower than that in the bulk solid. Furthermore, in all-dislocation- ceramics, dendrite formation could be avoided. Higher fracture toughness is due to enhanced emissions of dislocations from a crack tip by pre-existing dislocations, which causes shielding of a crack tip, energy dissipation due to plastic deformation and heating, and crack-tip blunting. All-dislocation-ceramics may be useful for all-solid-state batteries.

4.
Langmuir ; 39(46): 16574-16583, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37934653

RESUMO

The mechanism of the decrease in the surface tension of water containing bulk nanobubbles (ultrafine bubbles) is studied theoretically by numerical simulations of the adsorption of bulk nanobubbles at the liquid's surface based on the dynamic equilibrium model for the stability of a bulk nanobubble under the conditions of the Tuziuti experiment (Tuziuti, T., et al., Langmuir, 2023, 39, 5771-5778). It is predicted that the concentration of bulk nanobubbles in the bulk liquid decreases considerably with time, as many bulk nanobubbles are gradually adsorbed at the liquid's surface. A part of the decrease in surface tension is due to the Janus-like structure of a bulk nanobubble that could partly break the hydrogen bond network of water molecules at the liquid's surface because more than 50% of the bubble's surface is covered with hydrophobic impurities, according to the dynamic equilibrium model. The theoretically estimated decrease in surface tension due to the Janus-like structure of a bulk nanobubble agrees with the experimental data of the decrease in surface tension solely by bulk nanobubbles obtained by the comparison of before and after the elimination of bulk nanobubbles by the freeze-thaw process. This effect cannot be explained by the electric charge stabilization model widely discussed for the stability of a bulk nanobubble, although the present model is only applicable to the solution containing hydrophobic impurities. Another part of the decrease in surface tension should be due to impurities produced from a nanobubble generator, such as a mechanical seal, which was partly confirmed by the TOC measurements.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37536322

RESUMO

Upper limit of dislocation density without fracture is numerically calculated for slightly- ductile single-crystal ceramics for which the Griffith criterion for fracture and the Bailey-Hirsch type relationship between applied stress and the dislocation density are nearly valid simultaneously in order to obtain useful information to improve functional, electrical, and mechanical properties of ceramics by the introduction of appropriate dislocations. Two models of fracture as a function of dislocation density are constructed; simple model and probability model. If the diameter of pre-existing microcracks is sufficiently small, the dislocation density could be as high as the crystallographic limit (~10^18 m^-2). Even if the typical diameter of pre-existing microcracks is not so small, there is some probability that the dislocation density could be as high as the crystallographic limit if the number of microcracks in the specimen is very small. Accordingly, the increase in ionic conductivity by several orders of magnitude without dendrite formation by introducing appropriate dislocations into single-crystal solid electrolytes with the dislocation density higher than about 10^17 m^-2 theoretically predicted by the authors may be practically possible.

6.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241940

RESUMO

It has been experimentally reported that not only oxidation reactions but also reduction reactions occur in aqueous solutions under ultrasound without any additives. According to the numerical simulations of chemical reactions inside an air or argon bubble in water without any additives under ultrasound, reducing agents produced from the bubbles are H, H2, HO2 (which becomes superoxide anion (O2-) in liquid water), NO, and HNO2 (which becomes NO2- in liquid water). In addition, H2O2 sometimes works as a reducing agent. As the reduction potentials of H and H2 (in strongly alkaline solutions for H2) are higher than those of RCHOH radicals, which are usually used to reduce metal ions, H and H2 generated from cavitation bubbles are expected to reduce metal ions to produce metal nanoparticles (in strongly alkaline solutions for H2 to work). It is possible that the superoxide anion (O2-) also plays some role in the sonochemical reduction of some solutes. In strongly alkaline solutions, hydrated electrons (e-aq) formed from H atoms in liquid water may play an important role in the sonochemical reduction of solutes because the reduction potential is extremely high. The influence of ultrasonic frequency on the amount of H atoms produced from a cavitation bubble is also discussed.

7.
Langmuir ; 39(16): 5771-5778, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37052932

RESUMO

The effect of nanobubbles (NBs) on the surface tension of liquid was investigated by three methods of different measuring principles, pendant drop (PD), Wilhelmy, and du Noüy methods, over a wide range of number concentration of bulk NBs (BNBs). In all of the three methods, the surface tension decreased in proportion to the number concentration of BNBs and the proportional constant was different among the three methods. Such behavior was inferred to be caused by the surface excess of BNBs at the gas-liquid or solid-liquid interface. In the PD method, the hydrophobic interaction between BNBs and air around a drop seems to cause the surface excess of BNBs along the surface of water drops. It brings about a subtle change in its profile, resulting in the decrease in surface tension, which takes a time of hundreds of seconds. Meanwhile, in the Wilhelmy and du Noüy methods, electrostatic attractive force between BNBs and a plate or ring is a likely cause of surface excess at the solid-liquid interface, resulting in the instantaneous decrease in surface tension. This study also provides a practical methodology of comparison for surface tension of NB dispersion: surface tension shall be compared among different samples with the same measurement method. Especially in the PD method, retention time of droplets before measurement shall be the same among samples.

8.
Materials (Basel) ; 16(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36837241

RESUMO

In many materials, impurities and imperfections play a critical role on the physical and chemical properties. In the present review, some examples of such materials are discussed. A bulk nanobubble (an ultrafine bubble) is stabilized against dissolution by hydrophobic impurities attached to the bubble surface. An acoustic cavitation threshold in various liquids decreases significantly by the presence of impurities such as solid particles, etc. The strength of brittle ceramics is determined by the size and number of pre-existing microcracks (imperfections) in the specimen. The size effect of a BaTiO3 nanocrystal is influenced by the amount and species of adsorbates (impurities) on its surface as adsorbate-induced charge-screening changes the free energy. The dielectric constant of an assembly of BaTiO3 nanocubes is influenced by a small tilt angle (imperfection) between two attached nanocubes, which induces strain inside a nanocube, and is also influenced by the spatial strain-relaxation due to defects and dislocations (imperfections), resulting in flexoelectric polarization.

9.
Ultrason Sonochem ; 93: 106276, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36638653

RESUMO

The broad-band noise has been experimentally used to monitor the cavitation activity in a sonochemical reactor, an ultrasonic cleaning bath, a biological tissue, etc. However, the origin of the broad-band noise is still under debate. In the present review, two models for the mechanism of the broad-band noise are discussed. One is acoustic emissions from chaotically (non-periodically) pulsating bubbles. The other is acoustic emissions from bubbles with temporal fluctuation in the number of bubbles. It is suggested that the latter mechanism is sometimes dominant. Further studies are required on the role for bubble cluster dynamics as well as the bubble-bubble interaction in the broad-band noise especially at relatively low ultrasonic frequencies.

10.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144593

RESUMO

In comparison with the first-principles calculations mostly using partial differential equations (PDEs), numerical simulations with modeling by ordinary differential equations (ODEs) are sometimes superior in that they are computationally more economical and that important factors are more easily traced. However, a demerit of ODE modeling is the need of model validation through comparison with experimental data or results of the first-principles calculations. In the present review, examples of ODE modeling are reviewed such as sonochemical reactions inside a cavitation bubble, oriented attachment of nanocrystals, dynamic response of flexoelectric polarization, ultrasound-assisted sintering, and dynamics of a gas parcel in a thermoacoustic engine.

11.
Ultrasonics ; 126: 106824, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36041384

RESUMO

An alternative semi-empirical technique is developed to determine the number density of active cavitation bubbles (N) formed in sonicated solutions. This was achieved by relating the acoustic power supplied to the solution (i.e., determined experimentally) to the released heat by a single bubble. The energy dissipation via heat exchange is obtained by an advanced cavitation model accounting for the liquid compressibility and viscosity, the non-equilibrium condensation/evaporation of water vapor, and heat conduction across the bubble wall and heats of chemical reactions resulting within the bubble at the collapse. A good concordance was observed between our results and those found in the literature. It was found that the number of active bubbles increased proportionally with a rise in ultrasound frequency. Additionally, the increase of acoustic intensity increases the number of active bubbles, whatever the sonicated solution's volume. On the other hand, it was observed that the rise of the irradiated solution volume causes the number of active bubbles to be reduced even when the acoustic power is increased. A decrease in acoustic energy accelerates this negative impact.

12.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897962

RESUMO

In the present review, the production of O radicals (oxygen atoms) in acoustic cavitation is focused. According to numerical simulations of chemical reactions inside a bubble using an ODE model which has been validated through studies of single-bubble sonochemistry, not only OH radicals but also appreciable amounts of O radicals are generated inside a heated bubble at the violent collapse by thermal dissociation of water vapor and oxygen molecules. The main oxidant created inside an air bubble is O radicals when the bubble temperature is above about 6500 K for a gaseous bubble. However, the concentration and lifetime of O radicals in the liquid water around the cavitation bubbles are unknown at present. Whether O radicals play some role in sonochemical reactions in the liquid phase, which are usually thought to be dominated by OH radicals and H2O2, should be studied in the future.


Assuntos
Peróxido de Hidrogênio , Ultrassom , Fenômenos Químicos , Gases/química , Peróxido de Hidrogênio/química , Oxigênio
13.
Nanomaterials (Basel) ; 12(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808010

RESUMO

Theoretical studies are reviewed for bulk nanobubbles (ultrafine bubbles (UFBs)), which are gas bubbles smaller than 1 µm in diameter. The dynamic equilibrium model is discussed as a promising model for the stability of a UFB against dissolution; more than half of the surface of a UFB should be covered with hydrophobic material (impurity). OH radicals are produced during hydrodynamic or acoustic cavitation to produce UFBs. After stopping cavitation, OH radicals are generated through chemical reactions of H2O2 and O3 in the liquid water. The possibility of radical generation during the bubble dissolution is also discussed based on numerical simulations. UFBs are concentrated on the liquid surface according to the dynamic equilibrium model. As a result, rupture of liquid film is accelerated by the presence of UFBs, which results in a reduction in "surface tension", measured by the du Noüy ring method. Finally, the interaction of UFBs with a solid surface is discussed.

14.
Ultrason Sonochem ; 88: 106084, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35816889

RESUMO

Ultrasonic impregnation is thought to be an effective way of permeation of liquid into material through the material-surface reforming with the attack by an ultrasonic cavitation jet or by the shock wave emitted from a collapsing bubble, or through dynamic transformation of material like a sponge. The action of a cavitation bubble can also provide penetration of liquid into the interior of the material. This paper investigates whether there is a correlation between the intensity of sonoluminescence (SL) measured at different positions and the increment in the mass of the wood material (cedar) after sonication with immersion into water in order to clarify the role of cavitation bubbles for ultrasonic impregnation. It was found that a high mass change was obtained for the material located at the position for high (the maximum) SL intensity. The number density of ultrasonic cavitation bubbles that are able to collapse leading to the emission of SL is correlated with the degree of ultrasonic impregnation.


Assuntos
Ultrassom , Madeira , Sonicação , Água
15.
Nanomaterials (Basel) ; 12(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35055207

RESUMO

It has been reported that the flexoelectric effect could be dominant in the nanoscale. The discrepancy between theory and experiments on the frequency dependence of the dielectric constant of an ordered assembly of BaTiO3 nanocubes is nearly resolved by assuming the coexistence of flexo- and ferro-electric effects. Although flexoelectric polarizations perpendicular to the applied alternating electric field contribute to the dielectric constant, those parallel to the electric field do not contribute because the magnitude of the flexoelectric polarization does not change due to the mismatch of strain at the interface of the nanocubes. On the other hand, some dielectric response is possible for the ferroelectric component of the polarization parallel to the electric field.

16.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361777

RESUMO

In the present review, complexity in multibubble sonoluminescence (MBSL) is discussed. At relatively low ultrasonic frequency, a cavitation bubble is filled mostly with water vapor at relatively high acoustic amplitude which results in OH-line emission by chemiluminescence as well as emissions from weakly ionized plasma formed inside a bubble at the end of the violent bubble collapse. At relatively high ultrasonic frequency or at relatively low acoustic amplitude at relatively low ultrasonic frequency, a cavitation bubble is mostly filled with noncondensable gases such as air or argon at the end of the bubble collapse, which results in relatively high bubble temperature and light emissions from plasma formed inside a bubble. Ionization potential lowering for atoms and molecules occurs due to the extremely high density inside a bubble at the end of the violent bubble collapse, which is one of the main reasons for the plasma formation inside a bubble in addition to the high bubble temperature due to quasi-adiabatic compression of a bubble, where "quasi" means that appreciable thermal conduction takes place between the heated interior of a bubble and the surrounding liquid. Due to bubble-bubble interaction, liquid droplets enter bubbles at the bubble collapse, which results in sodium-line emission.

17.
Ultrason Sonochem ; 78: 105728, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34438317

RESUMO

Numerical simulations for sonochemistry are reviewed including single-bubble sonochemistry, influence of ultrasonic frequency and bubble size, acoustic field, and sonochemical synthesis of nanoparticles. The theoretical model of bubble dynamics including the effect of non-equilibrium chemical reactions inside a bubble has been validated from the study of single-bubble sonochemistry. By the numerical simulations, it has been clarified that there is an optimum bubble temperature for the production of oxidants inside an air bubble such as OH radicals and H2O2 because at higher temperature oxidants are strongly consumed inside a bubble by oxidizing nitrogen. Unsolved problems are also discussed.

18.
Ultrason Sonochem ; 76: 105646, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34182314

RESUMO

The present study mainly examined the effects of the volumetric concentration of nanobubbles (ultrafine bubbles) on the intensity of sonoluminescence (SL). The addition of nanobubbles at high acoustic amplitude enhanced the SL intensity for various bubble concentrations in comparison with that in pure water. This probably means that the resulting high amplitude is over the Blake threshold, and accordingly nanobubbles expand to some extent, leading to higher SL intensity. Therefore, nanobubbles have the potential to provide nucleation sites for sonochemistry. The influence of bubble size on the intensity of SL was also evaluated.

19.
Langmuir ; 37(5): 1674-1681, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33496599

RESUMO

The experimental results [Kanematsu, W. Chem. Eng. Sci. 2020, 219, 115594] on the temporal variations of number concentrations of bulk nanobubbles (ultrafine bubbles) in contact with polymer materials are theoretically analyzed based on the dynamic equilibrium model of bulk nanobubbles partly covered with hydrophobic materials (impurities). It is suggested that bulk nanobubbles are adsorbed on a polymer surface by attractive hydrophobic interaction between a polymer surface and a hydrophobic material partly covering the bubble surface, overcoming the repulsive double-layer interaction. There are two mysteries. One is that the maximum surface number concentration of bulk nanobubbles of about 70 nm in diameter adsorbed on a hydrophobic polymer surface is more than an order of magnitude lower than the typical value for colloid particles of a similar or larger size. The other is that the experimental adsorption rate of bulk nanobubbles on hydrophobic polymer surface is several orders of magnitude lower than the theoretically estimated one. The mysteries are resolved if many of the bulk nanobubbles adsorbed on a hydrophobic polymer surface change to surface nanobubbles with a footprint diameter of about 1 µm.

20.
J Phys Condens Matter ; 32(49): 495301, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33006321

RESUMO

Due to the strain gradient near each surface of a BaTiO3 nanocube in their ordered assembly, electric polarization appears due to flexoelectric effect. The magnitude of the flexoelectric polarization could be one order of magnitude larger than that of ferroelectric spontaneous polarization of BaTiO3. Thus, dielectric response of an assembly could be dominated by that of the flexoelectric polarization if there is no ferroelectric domain-wall motion. Numerical simulations of the dielectric response of a BaTiO3 nanocube in an ordered assembly are performed from kHz to MHz range based on a dynamic model of flexoelectric polarization assuming anharmonic potential. The calculated temperature dependence of the dielectric constant is consistent with the experimental data of high dielectric constant with nearly-flat temperature dependence. It is suggested that high dielectric constant with nearly-flat temperature dependence is not originated in ferroelectric nature of BaTiO3 nanocubes but originated in flexoelectric polarization in nanocubes which is also seen in non-ferroelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...