Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 90, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782986

RESUMO

The rapid development and deployment of vaccines following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been estimated to have saved millions of lives. Despite their immense success, there remains a need for next-generation vaccination approaches for SARS-CoV-2 and future emerging coronaviruses and other respiratory viruses. Here we utilized a Newcastle Disease virus (NDV) vectored vaccine expressing the ancestral SARS-CoV-2 spike protein in a pre-fusion stabilized chimeric conformation (NDV-PFS). When delivered intranasally, NDV-PFS protected both Syrian hamsters and K18 mice against Delta and Omicron SARS-CoV-2 variants of concern. Additionally, intranasal vaccination induced robust, durable protection that was extended to 6 months post-vaccination. Overall, our data provide evidence that NDV-vectored vaccines represent a viable next-generation mucosal vaccination approach.

2.
Vaccines (Basel) ; 12(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675786

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged following an outbreak of unexplained viral illness in China in late 2019. Since then, it has spread globally causing a pandemic that has resulted in millions of deaths and has had enormous economic and social consequences. The emergence of SARS-CoV-2 saw the rapid and widespread development of a number of vaccine candidates worldwide, and this never-before-seen pace of vaccine development led to several candidates progressing immediately through clinical trials. Many countries have now approved vaccines for emergency use, with large-scale vaccination programs ongoing. Despite these successes, there remains a need for ongoing pre-clinical and clinical development of vaccine candidates against SARS-CoV-2, as well as vaccines that can elicit strong mucosal immune responses. Here, we report on the efficacy of a Newcastle disease virus-vectored vaccine candidate expressing SARS-CoV-2 spike protein (NDV-FLS) administered to cynomolgus macaques. Macaques given two doses of the vaccine via respiratory immunization developed robust immune responses and had reduced viral RNA levels in nasal swabs and in the lower airway. Our data indicate that NDV-FLS administered mucosally provides significant protection against SARS-CoV-2 infection, resulting in reduced viral burden and disease manifestation, and should be considered as a viable candidate for clinical development.

3.
Gene Ther ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678160

RESUMO

Pseudomonas aeruginosa poses a significant threat to immunocompromised individuals and those with cystic fibrosis. Treatment relies on antibiotics, but persistent infections occur due to intrinsic and acquired resistance of P. aeruginosa towards multiple classes of antibiotics. To date, there are no licensed vaccines for this pathogen, prompting the urgent need for novel treatment approaches to combat P. aeruginosa infection and persistence. Here we validated AAV vectored immunoprophylaxis as a strategy to generate long-term plasma and mucosal expression of highly protective monoclonal antibodies (mAbs) targeting the exopolysaccharide Psl (Cam-003) and the PcrV (V2L2MD) component of the type-III secretion system injectosome either as single mAbs or together as a bispecific mAb (MEDI3902) in a mouse model. When administered intramuscularly, AAV-αPcrV, AAV-αPsl, and AAV-MEDI3902 significantly protected mice challenged intranasally with a lethal dose of P. aeruginosa strains PAO1 and PA14 and reduced bacterial burden and dissemination to other organs. While all AAV-mAbs provided protection, AAV-αPcrV and AAV-MEDI3902 provided 100% and 87.5% protection from a lethal challenge with 4.47 × 107 CFU PAO1 and 87.5% and 75% protection from a lethal challenge with 3 × 107 CFU PA14, respectively. Serum concentrations of MEDI3902 were ~10× lower than that of αPcrV, but mice treated with this vector showed a greater reduction in bacterial dissemination to the liver, lung, spleen, and blood compared to other AAV-mAbs. These results support further investigation into the use of AAV vectored immunoprophylaxis to prevent and treat P. aeruginosa infections and other bacterial pathogens of public health concern for which current treatment strategies are limited.

4.
bioRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38463977

RESUMO

Eye-tracking is an essential tool in many fields, yet existing solutions are often limited for customized applications due to cost or lack of flexibility. We present OpenIris, an adaptable and user-friendly open-source framework for video-based eye-tracking. OpenIris is developed in C# with modular design that allows further extension and customization through plugins for different hardware systems, tracking, and calibration pipelines. It can be remotely controlled via a network interface from other devices or programs. Eye movements can be recorded online from camera stream or offline post-processing recorded videos. Example plugins have been developed to track eye motion in 3-D, including torsion. Currently implemented binocular pupil tracking pipelines can achieve frame rates of more than 500Hz. With the OpenIris framework, we aim to fill a gap in the research tools available for high-precision and high-speed eye-tracking, especially in environments that require custom solutions that are not currently well-served by commercial eye-trackers.

5.
Front Microbiol ; 15: 1325558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328418

RESUMO

Introduction: Tumor microenvironments are immunosuppressive due to progressive accumulation of mutations in cancer cells that can drive expression of a range of inhibitory ligands and cytokines, and recruitment of immunomodulatory cells, including myeloid-derived suppressor cells (MDSC), tumor-associated macrophages, and regulatory T cells (Tregs). Methods: To reverse this immunosuppression, we engineered mesogenic Newcastle disease virus (NDV) to express immunological checkpoint inhibitors anti-cytotoxic T lymphocyte antigen-4 and soluble programmed death protein-1. Results: Intratumoral administration of recombinant NDV (rNDV) to mice bearing intradermal B16-F10 melanomas or subcutaneous CT26LacZ colon carcinomas led to significant changes in the tumor-infiltrating lymphocyte profiles. Vectorizing immunological checkpoint inhibitors in NDV increased activation of intratumoral natural killer cells and cytotoxic T cells and decreased Tregs and MDSCs, suggesting induction of a pro-inflammatory state with greater infiltration of activated CD8+ T cells. These notable changes translated to higher ratios of activated effector/suppressor tumor-infiltrating lymphocytes in both cancer models, which is a promising prognostic marker. Whereas all rNDV-treated groups showed evidence of tumor regression and increased survival in the CT26LacZ and B16-F10, only treatment with NDV expressing immunological checkpoint blockades led to complete responses compared to tumors treated with NDV only. Discussion: These data demonstrated that NDV expressing immunological checkpoint inhibitors could reverse the immunosuppressive state of tumor microenvironments and enhance tumor-specific T cell responses.

6.
J Neurosci ; 44(4)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050176

RESUMO

Each time we make an eye movement, attention moves before the eyes, resulting in a perceptual enhancement at the target. Recent psychophysical studies suggest that this pre-saccadic attention enhances the visual features at the saccade target, whereas covert attention causes only spatially selective enhancements. While previous nonhuman primate studies have found that pre-saccadic attention does enhance neural responses spatially, no studies have tested whether changes in neural tuning reflect an automatic feature enhancement. Here we examined pre-saccadic attention using a saccade foraging task developed for marmoset monkeys (one male and one female). We recorded from neurons in the middle temporal area with peripheral receptive fields that contained a motion stimulus, which would either be the target of a saccade or a distracter as a saccade was made to another location. We established that marmosets, like macaques, show enhanced pre-saccadic neural responses for saccades toward the receptive field, including increases in firing rate and motion information. We then examined if the specific changes in neural tuning might support feature enhancements for the target. Neurons exhibited diverse changes in tuning but predominantly showed additive and multiplicative increases that were uniformly applied across motion directions. These findings confirm that marmoset monkeys, like macaques, exhibit pre-saccadic neural enhancements during saccade foraging tasks with minimal training requirements. However, at the level of individual neurons, the lack of feature-tuned enhancements is similar to neural effects reported during covert spatial attention.


Assuntos
Callithrix , Movimentos Sacádicos , Animais , Masculino , Feminino , Movimentos Oculares , Atenção/fisiologia , Macaca , Estimulação Luminosa
7.
Neural Comput ; 36(2): 175-226, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38101329

RESUMO

Neural decoding methods provide a powerful tool for quantifying the information content of neural population codes and the limits imposed by correlations in neural activity. However, standard decoding methods are prone to overfitting and scale poorly to high-dimensional settings. Here, we introduce a novel decoding method to overcome these limitations. Our approach, the gaussian process multiclass decoder (GPMD), is well suited to decoding a continuous low-dimensional variable from high-dimensional population activity and provides a platform for assessing the importance of correlations in neural population codes. The GPMD is a multinomial logistic regression model with a gaussian process prior over the decoding weights. The prior includes hyperparameters that govern the smoothness of each neuron's decoding weights, allowing automatic pruning of uninformative neurons during inference. We provide a variational inference method for fitting the GPMD to data, which scales to hundreds or thousands of neurons and performs well even in data sets with more neurons than trials. We apply the GPMD to recordings from primary visual cortex in three species: monkey, ferret, and mouse. Our decoder achieves state-of-the-art accuracy on all three data sets and substantially outperforms independent Bayesian decoding, showing that knowledge of the correlation structure is essential for optimal decoding in all three species.


Assuntos
Furões , Neurônios , Animais , Camundongos , Teorema de Bayes , Neurônios/fisiologia
8.
Nat Neurosci ; 26(12): 2192-2202, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996524

RESUMO

Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling.


Assuntos
Callithrix , Fixação Ocular , Animais , Camundongos , Movimentos Oculares , Movimentos Sacádicos , Percepção Visual , Movimentos da Cabeça/fisiologia
9.
Nat Neurosci ; 26(11): 1953-1959, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828227

RESUMO

Organisms process sensory information in the context of their own moving bodies, an idea referred to as embodiment. This idea is important for developmental neuroscience, robotics and systems neuroscience. The mechanisms supporting embodiment are unknown, but a manifestation could be the observation in mice of brain-wide neuromodulation, including in the primary visual cortex, driven by task-irrelevant spontaneous body movements. We tested this hypothesis in macaque monkeys (Macaca mulatta), a primate model for human vision, by simultaneously recording visual cortex activity and facial and body movements. We also sought a direct comparison using an analogous approach to those used in mouse studies. Here we found that activity in the primate visual cortex (V1, V2 and V3/V3A) was associated with the animals' own movements, but this modulation was largely explained by the impact of the movements on the retinal image, that is, by changes in visual input. These results indicate that visual cortex in primates is minimally driven by spontaneous movements and may reflect species-specific sensorimotor strategies.


Assuntos
Córtex Visual , Humanos , Animais , Camundongos , Macaca mulatta , Visão Ocular , Encéfalo , Movimento , Vias Visuais
10.
Mol Ther ; 31(12): 3457-3477, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37805711

RESUMO

Surfactant protein B (SP-B) deficiency is a rare genetic disease that causes fatal respiratory failure within the first year of life. Currently, the only corrective treatment is lung transplantation. Here, we co-transduced the murine lung with adeno-associated virus 6.2FF (AAV6.2FF) vectors encoding a SaCas9-guide RNA nuclease or donor template to mediate insertion of promoterless reporter genes or the (murine) Sftpb gene in frame with the endogenous surfactant protein C (SP-C) gene, without disrupting SP-C expression. Intranasal administration of 3 × 1011 vg donor template and 1 × 1011 vg nuclease consistently edited approximately 6% of lung epithelial cells. Frequency of gene insertion increased in a dose-dependent manner, reaching 20%-25% editing efficiency with the highest donor template and nuclease doses tested. We next evaluated whether this promoterless gene editing platform could extend survival in the conditional SP-B knockout mouse model. Administration of 1 × 1012 vg SP-B-donor template and 5 × 1011 vg nuclease significantly extended median survival (p = 0.0034) from 5 days in the untreated off doxycycline group to 16 days in the donor AAV and nuclease group, with one gene-edited mouse living 243 days off doxycycline. This AAV6.2FF-based gene editing platform has the potential to correct SP-B deficiency, as well as other disorders of alveolar type II cells.


Assuntos
Doxiciclina , Edição de Genes , Camundongos , Animais , Dependovirus/genética , Vetores Genéticos/genética , RNA Guia de Sistemas CRISPR-Cas , Pulmão/metabolismo , Tensoativos/metabolismo , Sistemas CRISPR-Cas
11.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37808629

RESUMO

The relationship between perception and inference, as postulated by Helmholtz in the 19th century, is paralleled in modern machine learning by generative models like Variational Autoencoders (VAEs) and their hierarchical variants. Here, we evaluate the role of hierarchical inference and its alignment with brain function in the domain of motion perception. We first introduce a novel synthetic data framework, Retinal Optic Flow Learning (ROFL), which enables control over motion statistics and their causes. We then present a new hierarchical VAE and test it against alternative models on two downstream tasks: (i) predicting ground truth causes of retinal optic flow (e.g., self-motion); and (ii) predicting the responses of neurons in the motion processing pathway of primates. We manipulate the model architectures (hierarchical versus non-hierarchical), loss functions, and the causal structure of the motion stimuli. We find that hierarchical latent structure in the model leads to several improvements. First, it improves the linear decodability of ground truth factors and does so in a sparse and disentangled manner. Second, our hierarchical VAE outperforms previous state-of-the-art models in predicting neuronal responses and exhibits sparse latent-to-neuron relationships. These results depend on the causal structure of the world, indicating that alignment between brains and artificial neural networks depends not only on architecture but also on matching ecologically relevant stimulus statistics. Taken together, our results suggest that hierarchical Bayesian inference underlines the brain's understanding of the world, and hierarchical VAEs can effectively model this understanding.

12.
Nat Commun ; 14(1): 3656, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339973

RESUMO

Fixation constraints in visual tasks are ubiquitous in visual and cognitive neuroscience. Despite its widespread use, fixation requires trained subjects, is limited by the accuracy of fixational eye movements, and ignores the role of eye movements in shaping visual input. To overcome these limitations, we developed a suite of hardware and software tools to study vision during natural behavior in untrained subjects. We measured visual receptive fields and tuning properties from multiple cortical areas of marmoset monkeys who freely viewed full-field noise stimuli. The resulting receptive fields and tuning curves from primary visual cortex (V1) and area MT match reported selectivity from the literature which was measured using conventional approaches. We then combined free viewing with high-resolution eye tracking to make the first detailed 2D spatiotemporal measurements of foveal receptive fields in V1. These findings demonstrate the power of free viewing to characterize neural responses in untrained animals while simultaneously studying the dynamics of natural behavior.


Assuntos
Córtex Visual , Animais , Córtex Visual/fisiologia , Campos Visuais , Visão Ocular , Movimentos Oculares , Haplorrinos , Estimulação Luminosa
13.
Gene Ther ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732618

RESUMO

Respiratory syncytial virus (RSV) causes acute lower respiratory tract infections, with potential lower respiratory tract infections, which can be particularly problematic in infants and the elderly. There are no approved vaccines for RSV. The current standard of care for high-risk individuals is monthly administration of palivizumab, a humanized murine monoclonal antibody (mAb) targeting the RSV fusion protein. Adeno-associated virus (AAV)-mediated expression of mAbs has previously led to sustained expression of therapeutic concentrations of mAbs in several animal models, representing an alternative to repetitive passive administration. Intramuscular (IM) administration of AAV6.2FF expressing RSV antibodies, palivizumab or hRSV90, resulted in high concentrations of human (h)IgG1 mAbs in the serum and at various mucosal surfaces, while intranasal administration limited hIgG expression to the respiratory tract. IM administration of AAV6.2FF-hRSV90 or AAV6.2FF-palivizumab in a murine model provided sterilizing immunity against challenge with RSV A2. Evidence of maternal passive transfer of vectorized hRSV90 was detected in both murine and ovine models, with circulating mAbs providing sterilizing immunity in mouse progeny. Finally, addition of a "kill switch" comprised of LoxP sites flanking the mAb genes resulted in diminished serum hIgG after AAV-DJ-mediated delivery of Cre recombinase to the same muscle group that was originally transduced with the AAV-mAb vector. The ability of this AAV-mAb system to mediate robust, sustained mAb expression for maternal transfer to progeny in murine and ovine models emphasizes the potential of this platform for use as an alternative prophylactic vaccine for protection against neonatal infections, particularly in high-risk infants.

14.
Front Immunol ; 13: 1038340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466867

RESUMO

Novel immunotherapies continue to be developed and tested for application against a plethora of diseases. The clinical translation of immunotherapies requires an understanding of their mechanisms. The contributions of antibodies in driving long-term responses following immunotherapies continue to be revealed given their diverse effector functions. Developing an in-depth understanding of the role of antibodies in treatment efficacy is required to optimize immunotherapies and improve the chance of successfully translating them into the clinic. However, analyses of antibody responses can be challenging in the context of antigen-agnostic immunotherapies, particularly in the context of cancers that lack pre-defined target antigens. As such, robust methods are needed to evaluate the capacity of a given immunotherapy to induce beneficial antibody responses, and to identify any therapy-limiting antibodies. We previously developed a comprehensive method for detecting antibody responses induced by antigen-agnostic immunotherapies for application in pre-clinical models of vaccinology and cancer therapy. Here, we extend this method to a high-throughput, flow cytometry-based assay able to identify and quantify isotype-specific virus- and tumor-associated antibody responses induced by immunotherapies using small sample volumes with rapid speed and high sensitivity. This method provides a valuable and flexible protocol for investigating antibody responses induced by immunotherapies, which researchers can use to expand their analyses and optimize their own treatment regimens.


Assuntos
Imunoterapia , Neoplasias , Humanos , Citometria de Fluxo , Anticorpos , Neoplasias/terapia , Bioensaio
15.
Front Synaptic Neurosci ; 14: 888214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957943

RESUMO

The synaptic inputs to single cortical neurons exhibit substantial diversity in their sensory-driven activity. What this diversity reflects is unclear, and appears counter-productive in generating selective somatic responses to specific stimuli. One possibility is that this diversity reflects the propagation of information from one neural population to another. To test this possibility, we bridge population coding theory with measurements of synaptic inputs recorded in vivo with two-photon calcium imaging. We construct a probabilistic decoder to estimate the stimulus orientation from the responses of a realistic, hypothetical input population of neurons to compare with synaptic inputs onto individual neurons of ferret primary visual cortex (V1) recorded with two-photon calcium imaging in vivo. We find that optimal decoding requires diverse input weights and provides a straightforward mapping from the decoder weights to excitatory synapses. Analytically derived weights for biologically realistic input populations closely matched the functional heterogeneity of dendritic spines imaged in vivo with two-photon calcium imaging. Our results indicate that synaptic diversity is a necessary component of information transmission and reframes studies of connectivity through the lens of probabilistic population codes. These results suggest that the mapping from synaptic inputs to somatic selectivity may not be directly interpretable without considering input covariance and highlights the importance of population codes in pursuit of the cortical connectome.

16.
J Vis Exp ; (183)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35695536

RESUMO

Newcastle disease virus (NDV), also known as avian orthoavulavirus serotype-1, is a negative sense, single-stranded RNA virus that has been developed both as an oncolytic virus and a viral-vectored vaccine. NDV is an attractive therapeutic and prophylactic agent due to its well-established reverse genetics system, potent immunostimulatory properties, and excellent safety profile. When administered as an oncolytic virus or a viral-vectored vaccine, NDV elicits a robust antitumor or antigen-specific immune response, activating both the innate and adaptive arms of the immune system. Given these desirable characteristics, NDV has been evaluated in numerous clinical trials and is one of the most well-studied oncolytic viruses. Currently, there are two registered clinical trials involving NDV: one evaluating a recombinant NDV-vectored vaccine for SARS-CoV-2 (NCT04871737), and a second evaluating a recombinant NDV encoding Interleukin-12 in combination with Durvalumab, an antiPD-L1 antibody (NCT04613492). To facilitate further advancement of this highly promising viral vector, simplified methods for generating high-titer, in vivo-grade, recombinant NDV (rNDV) are needed. This paper describes a detailed procedure for amplifying rNDV in specified pathogen-free (SPF) embryonated chicken eggs and purifying rNDV from allantoic fluid, with improvements to reduce loss during purification. Also included are descriptions of the recommended quality control assays, which should be performed to confirm lack of contaminants and virus integrity. Overall, this detailed procedure enables the synthesis, purification, and storage of high-titer, in vivo-grade, recombinant, lentogenic, and mesogenic NDV for use in preclinical studies.


Assuntos
COVID-19 , Vírus Oncolíticos , Vacinas Virais , Animais , Vacinas contra COVID-19 , Galinhas , Humanos , Vírus da Doença de Newcastle/genética , Vírus Oncolíticos/genética , SARS-CoV-2 , Vacinas Virais/genética
17.
Biomedicines ; 10(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35203573

RESUMO

Epithelial ovarian cancer is the deadliest gynecological malignancy. The lack of effective treatments highlights the need for novel therapeutic interventions. The aim of this study was to investigate whether sustained adeno-associated virus (AAV) vector-mediated expression of vascular normalizing agents 3TSR and Fc3TSR and the antiangiogenic monoclonal antibody, Bevacizumab, with or without oncolytic virus treatment would improve survival in an orthotopic syngeneic mouse model of epithelial ovarian carcinoma. AAV vectors were administered 40 days post-tumor implantation and combined with oncolytic avian orthoavulavirus-1 (AOaV-1) 20 days later, at the peak of AAV-transgene expression, to ascertain whether survival could be extended. Flow cytometry conducted on blood samples, taken at an acute time point post-AOaV-1 administration (36 h), revealed a significant increase in activated NK cells in the blood of all mice that received AOaV-1. T cell analysis revealed a significant increase in CD8+ tumor specific T cells in the blood of AAV-Bevacizumab+AOaV-1 treated mice compared to control mice 10 days post AOaV-1 administration. Immunohistochemical staining of primary tumors harvested from a subset of mice euthanized 90 days post tumor implantation, when mice typically have large primary tumors, secondary peritoneal lesions, and extensive ascites fluid production, revealed that AAV-3TSR, AAV-Fc3TSR+AOaV-1, or AAV-Bevacizumab+AOaV-1 treated mice had significantly more tumor-infiltrating CD8+ T cells than PBS controls. Despite AAV-mediated transgene expression waning faster in tumor-bearing mice than in non-tumor bearing mice, all three of the AAV therapies significantly extended survival compared to control mice; with AAV-Bevacizumab performing the best in this model. However, combining AAV therapies with a single dose of AOaV-1 did not lead to significant extensions in survival compared to AAV therapies on their own, suggesting that additional doses of AOaV-1 may be required to improve efficacy in this model. These results suggest that vectorizing anti-angiogenic and vascular normalizing agents is a viable therapeutic option that warrants further investigation, including optimizing combination therapies.

18.
PLoS Comput Biol ; 17(11): e1009517, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843452

RESUMO

Making good decisions requires updating beliefs according to new evidence. This is a dynamical process that is prone to biases: in some cases, beliefs become entrenched and resistant to new evidence (leading to primacy effects), while in other cases, beliefs fade over time and rely primarily on later evidence (leading to recency effects). How and why either type of bias dominates in a given context is an important open question. Here, we study this question in classic perceptual decision-making tasks, where, puzzlingly, previous empirical studies differ in the kinds of biases they observe, ranging from primacy to recency, despite seemingly equivalent tasks. We present a new model, based on hierarchical approximate inference and derived from normative principles, that not only explains both primacy and recency effects in existing studies, but also predicts how the type of bias should depend on the statistics of stimuli in a given task. We verify this prediction in a novel visual discrimination task with human observers, finding that each observer's temporal bias changed as the result of changing the key stimulus statistics identified by our model. The key dynamic that leads to a primacy bias in our model is an overweighting of new sensory information that agrees with the observer's existing belief-a type of 'confirmation bias'. By fitting an extended drift-diffusion model to our data we rule out an alternative explanation for primacy effects due to bounded integration. Taken together, our results resolve a major discrepancy among existing perceptual decision-making studies, and suggest that a key source of bias in human decision-making is approximate hierarchical inference.


Assuntos
Viés , Tomada de Decisões , Percepção , Humanos , Modelos Psicológicos
19.
iScience ; 24(11): 103219, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34632328

RESUMO

The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Worldwide efforts are being made to develop vaccines to mitigate this pandemic. We engineered two recombinant Newcastle disease virus (NDV) vectors expressing either the full-length SARS-CoV-2 spike protein (NDV-FLS) or a version with a 19 amino acid deletion at the carboxy terminus (NDV-Δ19S). Hamsters receiving two doses (prime-boost) of NDV-FLS developed a robust SARS-CoV-2-neutralizing antibody response, with elimination of infectious virus in the lungs and minimal lung pathology at five days post-challenge. Single-dose vaccination with NDV-FLS significantly reduced SARS-CoV-2 replication in the lungs but only mildly decreased lung inflammation. NDV-Δ19S-treated hamsters had a moderate decrease in SARS-CoV-2 titers in lungs and presented with severe microscopic lesions, suggesting that truncation of the spike protein was a less effective strategy. In summary, NDV-vectored vaccines represent a viable option for protection against COVID-19.

20.
Biomedicines ; 9(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34572372

RESUMO

Adeno-associated virus (AAV) vector mediated expression of therapeutic monoclonal antibodies is an alternative strategy to traditional vaccination to generate immunity in immunosuppressed or immunosenescent individuals. In this study, we vectorized a human monoclonal antibody (31C2) directed against the spike protein of SARS-CoV-2 and determined the safety profile of this AAV vector in mice and sheep as a large animal model. In both studies, plasma biochemical parameters and hematology were comparable to untreated controls. Except for mild myositis at the site of injection, none of the major organs revealed any signs of toxicity. AAV-mediated human IgG expression increased steadily throughout the 28-day study in sheep, resulting in peak concentrations of 21.4-46.7 µg/ mL, demonstrating practical scale up from rodent to large animal models. This alternative approach to immunity is worth further exploration after this demonstration of safety, tolerability, and scalability in a large animal model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...