Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Stand Genomic Sci ; 10: 113, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26629308

RESUMO

Bradyrhizobium sp. WSM1253 is a novel N2-fixing bacterium isolated from a root nodule of the herbaceous annual legume Ornithopus compressus that was growing on the Greek Island of Sifnos. WSM1253 emerged as a strain of interest in an Australian program that was selecting inoculant quality bradyrhizobial strains for inoculation of Mediterranean species of lupins (Lupinus angustifolius, L. princei, L. atlanticus, L. pilosus). In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 8,719,808 bp genome has a G + C content of 63.09 % with 71 contigs arranged into two scaffolds. The assembled genome contains 8,432 protein-coding genes, 66 RNA genes and a single rRNA operon. This improved-high-quality draft rhizobial genome is one of 20 sequenced through a DOE Joint Genome Institute 2010 Community Sequencing Project.

2.
Stand Genomic Sci ; 10: 79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26478785

RESUMO

Burkholderia sp. strain WSM4176 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective N2-fixing root nodule of Lebeckia ambigua collected in Nieuwoudtville, Western Cape of South Africa, in October 2007. This plant persists in infertile, acidic and deep sandy soils, and is therefore an ideal candidate for a perennial based agriculture system in Western Australia. Here we describe the features of Burkholderia sp. strain WSM4176, which represents a potential inoculant quality strain for L. ambigua, together with sequence and annotation. The 9,065,247 bp high-quality-draft genome is arranged in 13 scaffolds of 65 contigs, contains 8369 protein-coding genes and 128 RNA-only encoding genes, and is part of the GEBA-RNB project proposal (Project ID 882).

3.
Stand Genomic Sci ; 10: 87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26512312

RESUMO

Bradyrhizobium sp. strain WSM1743 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of an Indigofera sp. WSM1743 was isolated from a nodule recovered from the roots of an Indigofera sp. growing 20 km north of Carnarvon in Australia. It is slow growing, tolerates up to 1 % NaCl and is capable of growth at 37 °C. Here we describe the features of Bradyrhizobium sp. strain WSM1743, together with genome sequence information and its annotation. The 8,341,956 bp high-quality permanent draft genome is arranged into 163 scaffolds and 167 contigs, contains 7908 protein-coding genes and 75 RNA-only encoding genes and was sequenced as part of the Root Nodule Bacteria chapter of the Genomic Encyclopedia of Bacteria and Archaea project.

4.
Stand Genomic Sci ; 10: 44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380632

RESUMO

Rhizobium sullae strain WSM1592 is an aerobic, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen (N2) fixing root nodule formed on the short-lived perennial legume Hedysarum coronarium (also known as Sulla coronaria or Sulla). WSM1592 was isolated from a nodule recovered from H. coronarium roots located in Ottava, bordering Sassari, Sardinia in 1995. WSM1592 is highly effective at fixing nitrogen with H. coronarium, and is currently the commercial Sulla inoculant strain in Australia. Here we describe the features of R. sullae strain WSM1592, together with genome sequence information and its annotation. The 7,530,820 bp high-quality permanent draft genome is arranged into 118 scaffolds of 118 contigs containing 7.453 protein-coding genes and 73 RNA-only encoding genes. This rhizobial genome is sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

5.
Stand Genomic Sci ; 10: 64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388968

RESUMO

Burkholderia dilworthii strain WSM3556(T) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective N2-fixing root nodule of Lebeckia ambigua collected near Grotto Bay Nature Reserve, in the Western Cape of South Africa, in October 2004. This plant persists in infertile and deep sandy soils with acidic pH, and is therefore an ideal candidate for a perennial based agriculture system in Western Australia. WSM3556(T) thus represents a potential inoculant quality strain for L. ambigua for which we describe the general features, together with genome sequence and annotation. The 7,679,067 bp high-quality permanent draft genome is arranged in 140 scaffolds of 141 contigs, contains 7,059 protein-coding genes and 64 RNA-only encoding genes, and is part of the GEBA-RNB project proposal.

6.
Stand Genomic Sci ; 9(3): 462-72, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197432

RESUMO

Mesorhizobium ciceri bv. biserrulae strain WSM1271(T) was isolated from root nodules of the pasture legume Biserrula pelecinus growing in the Mediterranean basin. Previous studies have shown this aerobic, motile, Gram negative, non-spore-forming rod preferably nodulates B. pelecinus - a legume with many beneficial agronomic attributes for sustainable agriculture in Australia. We describe the genome of Mesorhizobium ciceri bv. biserrulae strain WSM1271(T) consisting of a 6,264,489 bp chromosome and a 425,539 bp plasmid that together encode 6,470 protein-coding genes and 61 RNA-only encoding genes.

7.
Stand Genomic Sci ; 9(3): 527-39, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197438

RESUMO

Rhizobium leguminosarum bv. trifolii is a soil-inhabiting bacterium that has the capacity to be an effective N2-fixing microsymbiont of Trifolium (clover) species. R. leguminosarum bv. trifolii strain WSM1689 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Trifolium uniflorum collected on the edge of a valley 6 km from Eggares on the Greek Island of Naxos. Although WSM1689 is capable of highly effective N2-fixation with T. uniflorum, it is either unable to nodulate or unable to fix N2 with a wide range of both perennial and annual clovers originating from Europe, North America and Africa. WSM1689 therefore possesses a very narrow host range for effective N2 fixation and can thus play a valuable role in determining the geographic and phenological barriers to symbiotic performance in the genus Trifolium. Here we describe the features of R. leguminosarum bv. trifolii strain WSM1689, together with the complete genome sequence and its annotation. The 6,903,379 bp genome contains 6,709 protein-coding genes and 89 RNA-only encoding genes. This multipartite genome contains six distinct replicons; a chromosome of size 4,854,518 bp and five plasmids of size 667,306, 518,052, 341,391, 262,704 and 259,408 bp. This rhizobial genome is one of 20 sequenced as part of a DOE Joint Genome Institute 2010 Community Sequencing Program.

8.
Stand Genomic Sci ; 9: 5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25780498

RESUMO

Strains of a pink-pigmented Methylobacterium sp. are effective nitrogen- (N2) fixing microsymbionts of species of the African crotalarioid genus Listia. Strain WSM2598 is an aerobic, motile, Gram-negative, non-spore-forming rod isolated in 2002 from a Listia bainesii root nodule collected at Estcourt Research Station in South Africa. Here we describe the features of Methylobacterium sp. WSM2598, together with information and annotation of a high-quality draft genome sequence. The 7,669,765 bp draft genome is arranged in 5 scaffolds of 83 contigs, contains 7,236 protein-coding genes and 18 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 G enomic E ncyclopedia for B acteria and A rchaea- R oot N odule B acteria (GEBA-RNB) project.

9.
Ann Bot ; 112(1): 1-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23712451

RESUMO

BACKGROUND AND AIMS: The legume clade Lotononis sensu lato (s.l.; tribe Crotalarieae) comprises three genera: Listia, Leobordea and Lotononis sensu stricto (s.s.). Listia species are symbiotically specific and form lupinoid nodules with rhizobial species of Methylobacterium and Microvirga. This work investigated whether these symbiotic traits were confined to Listia by determining the ability of rhizobial strains isolated from species of Lotononis s.l. to nodulate Listia, Leobordea and Lotononis s.s. hosts and by examining the morphology and structure of the resulting nodules. METHODS: Rhizobia were characterized by sequencing their 16S rRNA and nodA genes. Nodulation and N2 fixation on eight taxonomically diverse Lotononis s.l. species were determined in glasshouse trials. Nodules of all hosts, and the process of infection and nodule initiation in Listia angolensis and Listia bainesii, were examined by light microscopy. KEY RESULTS: Rhizobia associated with Lotononis s.l. were phylogenetically diverse. Leobordea and Lotononis s.s. isolates were most closely related to Bradyrhizobium spp., Ensifer meliloti, Mesorhizobium tianshanense and Methylobacterium nodulans. Listia angolensis formed effective nodules only with species of Microvirga. Listia bainesii nodulated only with pigmented Methylobacterium. Five lineages of nodA were found. Listia angolensis and L. bainesii formed lupinoid nodules, whereas nodules of Leobordea and Lotononis s.s. species were indeterminate. All effective nodules contained uniformly infected central tissue. Listia angolensis and L. bainesii nodule initials occurred on the border of the hypocotyl and along the tap root, and nodule primordia developed in the outer cortical layer. Neither root hair curling nor infection threads were seen. CONCLUSIONS: Two specificity groups occur within Lotononis s.l.: Listia species are symbiotically specific, while species of Leobordea and Lotononis s.s. are generally promiscuous and interact with rhizobia of diverse chromosomal and symbiotic lineages. The seasonally waterlogged habitat of Listia species may favour the development of symbiotic specificity.


Assuntos
Fabaceae/microbiologia , Rhizobium/fisiologia , Simbiose/fisiologia , África Austral , Bradyrhizobium/genética , Bradyrhizobium/fisiologia , Genes Bacterianos , Methylobacteriaceae/genética , Methylobacteriaceae/fisiologia , Methylobacterium/genética , Methylobacterium/fisiologia , Fixação de Nitrogênio/genética , Filogenia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
10.
Int J Syst Evol Microbiol ; 63(Pt 11): 3950-3957, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23710047

RESUMO

Seven Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Burkholderia, with the representative strain WSM5005(T) being most closely related to Burkholderia tuberum (98.08 % sequence similarity). Additionally, these strains formed a distinct group in phylogenetic trees based on the housekeeping genes gyrB and recA. Chemotaxonomic data including fatty acid profiles and analysis of respiratory quinones supported the assignment of the strains to the genus Burkholderia. Results of DNA-DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from the closest species of the genus Burkholderia with a validly published name. Therefore, these strains represent a novel species for which the name Burkholderia sprentiae sp. nov. (type strain WSM5005(T) = LMG 27175(T) = HAMBI 3357(T)) is proposed.


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genótipo , Funções Verossimilhança , Dados de Sequência Molecular , Hibridização de Ácido Nucleico/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Ubiquinona/química
11.
Stand Genomic Sci ; 9(2): 294-303, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24976886

RESUMO

Mesorhizobium opportunistum strain WSM2075(T) was isolated in Western Australia in 2000 from root nodules of the pasture legume Biserrula pelecinus that had been inoculated with M. ciceri bv. biserrulae WSM1271. WSM2075(T) is an aerobic, motile, Gram negative, non-spore-forming rod that has gained the ability to nodulate B. pelecinus but is completely ineffective in N2 fixation with this host. This report reveals that the genome of M. opportunistum strain WSM2075(T) contains a chromosome of size 6,884,444 bp, encoding 6,685 protein-coding genes and 62 RNA-only encoding genes. The genome contains no plasmids, but does harbor a 455.7 kb genomic island from Mesorhizobium ciceri bv. biserrulae WSM1271 that has been integrated into a phenylalanine-tRNA gene.

12.
Stand Genomic Sci ; 9(2): 385-94, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24976894

RESUMO

"Burkholderia sprentiae" strain WSM5005(T) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated in Australia from an effective N2-fixing root nodule of Lebeckia ambigua collected in Klawer, Western Cape of South Africa, in October 2007. Here we describe the features of "Burkholderia sprentiae" strain WSM5005(T), together with the genome sequence and its annotation. The 7,761,063 bp high-quality-draft genome is arranged in 8 scaffolds of 236 contigs, contains 7,147 protein-coding genes and 76 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.

13.
Stand Genomic Sci ; 9(2): 410-9, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24976896

RESUMO

Mesorhizobium australicum strain WSM2073(T) was isolated from root nodules on the pasture legume Biserrula pelecinus growing in Australia in 2000. This aerobic, motile, gram negative, non-spore-forming rod is poorly effective in N2 fixation on B. pelecinus and has gained the ability to nodulate B. pelecinus following in situ lateral transfer of a symbiosis island from the original inoculant strain for this legume, Mesorhizobium ciceri bv. biserrulae WSM1271. We describe that the genome size of M. australicum strain WSM2073(T) is 6,200,534 bp encoding 6,013 protein-coding genes and 67 RNA-only encoding genes. This genome does not contain any plasmids but has a 455.7 kb genomic island from Mesorhizobium ciceri bv. biserrulae WSM1271 that has been integrated into a phenylalanine-tRNA gene.

14.
Int J Syst Evol Microbiol ; 62(Pt 11): 2579-2588, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22199210

RESUMO

Strains of Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from nitrogen-fixing nodules of the native legumes Listia angolensis (from Zambia) and Lupinus texensis (from Texas, USA). Phylogenetic analysis of the 16S rRNA gene showed that the novel strains belong to the genus Microvirga, with ≥ 96.1% sequence similarity with type strains of this genus. The closest relative of the representative strains Lut6(T) and WSM3557(T) was Microvirga flocculans TFB(T), with 97.6-98.0% similarity, while WSM3693(T) was most closely related to Microvirga aerilata 5420S-16(T), with 98.8% similarity. Analysis of the concatenated sequences of four housekeeping gene loci (dnaK, gyrB, recA and rpoB) and cellular fatty acid profiles confirmed the placement of Lut6(T), WSM3557(T) and WSM3693(T) within the genus Microvirga. DNA-DNA relatedness values, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of Lut6(T), WSM3557(T) and WSM3693(T) from each other and from other Microvirga species with validly published names. The nodA sequence of Lut6(T) was placed in a clade that contained strains of Rhizobium, Mesorhizobium and Sinorhizobium, while the 100% identical nodA sequences of WSM3557(T) and WSM3693(T) clustered with Bradyrhizobium, Burkholderia and Methylobacterium strains. Concatenated sequences for nifD and nifH show that the sequences of Lut6(T), WSM3557(T) and WSM3693(T) were most closely related to that of Rhizobium etli CFN42(T) nifDH. On the basis of genotypic, phenotypic and DNA relatedness data, three novel species of Microvirga are proposed: Microvirga lupini sp. nov. (type strain Lut6(T) =LMG 26460(T) =HAMBI 3236(T)), Microvirga lotononidis sp. nov. (type strain WSM3557(T) =LMG 26455(T) =HAMBI 3237(T)) and Microvirga zambiensis sp. nov. (type strain WSM3693(T) =LMG 26454(T) =HAMBI 3238(T)).


Assuntos
Fabaceae/microbiologia , Methylobacteriaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Methylobacteriaceae/genética , Methylobacteriaceae/isolamento & purificação , Dados de Sequência Molecular , Fixação de Nitrogênio , Nodulação , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Texas , Zâmbia
15.
Stand Genomic Sci ; 2(1): 66-76, 2010 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21304679

RESUMO

Rhizobium leguminosarum bv trifolii is the effective nitrogen fixing microsymbiont of a diverse range of annual and perennial Trifolium (clover) species. Strain WSM2304 is an aerobic, motile, non-spore forming, Gram-negative rod, isolated from Trifolium polymorphum in Uruguay in 1998. This microsymbiont predominated in the perennial grasslands of Glencoe Research Station, in Uruguay, to competitively nodulate its host, and fix atmospheric nitrogen. Here we describe the basic features of WSM2304, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a nitrogen fixing microsymbiont of a clover species from the American center of origin. We reveal that its genome size is 6,872,702 bp encoding 6,643 protein-coding genes and 62 RNA only encoding genes. This multipartite genome was found to contain 5 distinct replicons; a chromosome of size 4,537,948 bp and four circular plasmids of size 1,266,105 bp, 501,946 bp, 308,747 bp and 257,956 bp.

16.
Stand Genomic Sci ; 2(1): 77-86, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21304680

RESUMO

Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome sequence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951 bp, 1,245,408 bp and 219,313 bp. The smallest plasmid is a feature unique to this medic microsymbiont.

17.
Stand Genomic Sci ; 2(3): 347-56, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21304718

RESUMO

Rhizobium leguminosarum bv trifolii is a soil-inhabiting bacterium that has the capacity to be an effective nitrogen fixing microsymbiont of a diverse range of annual Trifolium (clover) species. Strain WSM1325 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from root nodules collected in 1993 from the Greek Island of Serifos. WSM1325 is produced commercially in Australia as an inoculant for a broad range of annual clovers of Mediterranean origin due to its superior attributes of saprophytic competence, nitrogen fixation and acid-tolerance. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a microsymbiont of annual clovers. We reveal that its genome size is 7,418,122 bp encoding 7,232 protein-coding genes and 61 RNA-only encoding genes. This multipartite genome contains 6 distinct replicons; a chromosome of size 4,767,043 bp and 5 plasmids of size 828,924 bp, 660,973 bp, 516,088 bp, 350,312 bp and 294,782 bp.

18.
Arch Microbiol ; 191(4): 311-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19152052

RESUMO

The South African legumes Lotononis bainesii, L. listii and L. solitudinis are specifically nodulated by highly effective, pink-pigmented bacteria that are most closely related to Methylobacterium nodulans on the basis of 16S rRNA gene homology. Methylobacterium spp. are characterized by their ability to utilize methanol and other C(1) compounds, but 11 Lotononis isolates neither grew on methanol as a sole carbon source nor were able to metabolize it. No product was obtained for PCR amplification of mxaF, the gene encoding the large subunit of methanol dehydrogenase. Searches for methylotrophy genes in the sequenced genome of Methylobacterium sp. 4-46, isolated from L. bainesii, indicate that the inability to utilize methanol may be due to the absence of the mxa operon. While methylotrophy appears to contribute to the effectiveness of the Crotalaria/M. nodulans symbiosis, our results indicate that the ability to utilize methanol is not a factor in the Lotononis/Methylobacterium symbiosis.


Assuntos
Fabaceae/microbiologia , Metanol/metabolismo , Methylobacterium/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , Oxirredutases do Álcool/genética , Meios de Cultura , Genes Bacterianos , Genes de RNAr , Genoma Bacteriano , Methylobacterium/genética , Methylobacterium/crescimento & desenvolvimento , Methylobacterium/metabolismo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Especificidade da Espécie , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...