Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neural Circuits ; 16: 972157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160948

RESUMO

A fundamental task faced by the auditory system is the detection of events that are signaled by fluctuations in sound. Spiking in auditory cortical neurons is critical for sound detection, but the causal roles of specific cell types and circuits are still mostly unknown. Here we tested the role of a genetically identified population of layer 4 auditory cortical neurons in sound detection. We measured sound detection using a common variant of pre-pulse inhibition of the acoustic startle response, in which a silent gap in background noise acts as a cue that attenuates startle. We used a Gpr26-Cre driver line, which we found expressed predominantly in layer 4 of auditory cortex. Photostimulation of these cells, which were responsive to gaps in noise, was sufficient to attenuate the startle reflex. Photosuppression of these cells reduced neural responses to gaps throughout cortex, and impaired behavioral gap detection. These data demonstrate that cortical Gpr26 neurons are both necessary and sufficient for top-down modulation of the acoustic startle reflex, and are thus likely to be involved in sound detection.


Assuntos
Córtex Auditivo , Estimulação Acústica , Acústica , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Neurônios , Inibição Pré-Pulso , Reflexo de Sobressalto/fisiologia
2.
Front Neural Circuits ; 15: 618881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897378

RESUMO

Movement has a prominent impact on activity in sensory cortex, but has opposing effects on visual and auditory cortex. Both cortical areas feature a vasoactive intestinal peptide-expressing (VIP) disinhibitory circuit, which in visual cortex contributes to the effect of running. In auditory cortex, however, the role of VIP circuitry in running effects remains poorly understood. Running and optogenetic VIP activation are known to differentially modulate sound-evoked activity in auditory cortex, but it is unknown how these effects vary across cortical layers, and whether laminar differences in the roles of VIP circuitry could contribute to the substantial diversity that has been observed in the effects of both movement and VIP activation. Here we asked whether VIP neurons contribute to the effects of running, across the layers of auditory cortex. We found that both running and optogenetic activation of VIP neurons produced diverse changes in the firing rates of auditory cortical neurons, but with distinct effects on spontaneous and evoked activity and with different patterns across cortical layers. On average, running increased spontaneous firing rates but decreased evoked firing rates, resulting in a reduction of the neuronal encoding of sound. This reduction in sound encoding was observed in all cortical layers, but was most pronounced in layer 2/3. In contrast, VIP activation increased both spontaneous and evoked firing rates, and had no net population-wide effect on sound encoding, but strongly suppressed sound encoding in layer 4 narrow-spiking neurons. These results suggest that VIP activation and running act independently, which we then tested by comparing the arithmetic sum of the two effects measured separately to the actual combined effect of running and VIP activation, which were closely matched. We conclude that the effects of locomotion in auditory cortex are not mediated by the VIP network.


Assuntos
Córtex Auditivo/fisiologia , Locomoção/fisiologia , Inibição Neural/fisiologia , Córtex Visual/fisiologia , Animais , Interneurônios/fisiologia , Camundongos , Neurônios/metabolismo , Optogenética , Peptídeo Intestinal Vasoativo/metabolismo
3.
Front Neural Circuits ; 14: 553208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192336

RESUMO

While connectivity within sensory cortical circuits has been studied extensively, how these connections contribute to perception and behavior is not well understood. Here we tested the role of a circuit between layers 3 and 5 of auditory cortex in sound detection. We measured sound detection using a common variant of pre-pulse inhibition of the acoustic startle response, in which a silent gap in background noise acts as a cue that attenuates startle. We used the Nr5a-Cre driver line, which we found drove expression in the auditory cortex restricted predominantly to layer 3. Photoactivation of these cells evoked short-latency, highly reliable spiking in downstream layer 5 neurons, and attenuated startle responses similarly to gaps in noise. Photosuppression of these cells did not affect behavioral gap detection. Our data provide the first demonstration that direct activation of auditory cortical neurons is sufficient to attenuate the acoustic startle response, similar to the detection of a sound.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Neurônios/fisiologia , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Estimulação Acústica , Animais , Camundongos , Camundongos Transgênicos , Vias Neurais/fisiologia , Fator Esteroidogênico 1/genética
4.
Cereb Cortex ; 30(6): 3590-3607, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32055848

RESUMO

Auditory cortex (AC) is necessary for the detection of brief gaps in ongoing sounds, but not for the detection of longer gaps or other stimuli such as tones or noise. It remains unclear why this is so, and what is special about brief gaps in particular. Here, we used both optogenetic suppression and conventional lesions to show that the cortical dependence of brief gap detection hinges specifically on gap termination. We then identified a cortico-collicular gap detection circuit that amplifies cortical gap termination responses before projecting to inferior colliculus (IC) to impact behavior. We found that gaps evoked off-responses and on-responses in cortical neurons, which temporally overlapped for brief gaps, but not long gaps. This overlap specifically enhanced cortical responses to brief gaps, whereas IC neurons preferred longer gaps. Optogenetic suppression of AC reduced collicular responses specifically to brief gaps, indicating that under normal conditions, the enhanced cortical representation of brief gaps amplifies collicular gap responses. Together these mechanisms explain how and why AC contributes to the behavioral detection of brief gaps, which are critical cues for speech perception, perceptual grouping, and auditory scene analysis.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Percepção do Tempo/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/citologia , Colículos Inferiores/citologia , Camundongos , Vias Neurais , Optogenética , Detecção de Sinal Psicológico
5.
Front Neural Circuits ; 10: 76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746722

RESUMO

Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM) inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons.


Assuntos
Córtex Cerebral/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Somatostatina/fisiologia , Animais , Córtex Cerebral/metabolismo , Interneurônios/metabolismo , Somatostatina/metabolismo
6.
Curr Biol ; 26(22): 3046-3052, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27773567

RESUMO

The ability to genetically identify and manipulate neural circuits in the mouse is rapidly advancing our understanding of visual processing in the mammalian brain [1, 2]. However, studies investigating the circuitry that underlies complex ethologically relevant visual behaviors in the mouse have been primarily restricted to fear responses [3-5]. Here, we show that a laboratory strain of mouse (Mus musculus, C57BL/6J) robustly pursues, captures, and consumes live insect prey and that vision is necessary for mice to perform the accurate orienting and approach behaviors leading to capture. Specifically, we differentially perturbed visual or auditory input in mice and determined that visual input is required for accurate approach, allowing maintenance of bearing to within 11° of the target on average during pursuit. While mice were able to capture prey without vision, the accuracy of their approaches and capture rate dramatically declined. To better explore the contribution of vision to this behavior, we developed a simple assay that isolated visual cues and simplified analysis of the visually guided approach. Together, our results demonstrate that laboratory mice are capable of exhibiting dynamic and accurate visually guided approach behaviors and provide a means to estimate the visual features that drive behavior within an ethological context.


Assuntos
Comportamento Predatório , Visão Ocular , Percepção Visual , Animais , Percepção Auditiva , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Orientação , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA