Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Small ; 18(10): e2106271, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34921590

RESUMO

Hybrid microrobots have recently attracted attention due to their ability to combine different energy sources and/or external stimuli for propulsion and performing desired tasks. Despite progresses in the past, on-demand speed modulation for hybrid microrobots has not been analyzed in detail. Herein, the influence of surface properties and crystallite size on the propulsion mechanism of Pt/TiO2 chemical/light-driven hybrid microrobots is investigated. The morphology of urchin-like Pt/TiO2 microrobots leads to "on-the-fly" optical brake behavior under UV irradiation. In contrast, smooth Pt/TiO2 microrobots demonstrate accelerated motion in the same conditions. The comparison between two types of microrobots also indicates the significance of a high surface area and a high crystallite size to increase their speed. The results demonstrate the profound impact of surface features for next-generation smart micro/nanorobots with on-demand reaction capability in dynamically changing environments.


Assuntos
Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...