Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 22(1): e50949, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33251722

RESUMO

AMP-activated protein kinase (AMPK) is a multifunctional kinase that regulates microtubule (MT) dynamic instability through CLIP-170 phosphorylation; however, its physiological relevance in vivo remains to be elucidated. In this study, we identified an active form of AMPK localized at the intercalated disks in the heart, a specific cell-cell junction present between cardiomyocytes. A contractile inhibitor, MYK-461, prevented the localization of AMPK at the intercalated disks, and the effect was reversed by the removal of MYK-461, suggesting that the localization of AMPK is regulated by mechanical stress. Time-lapse imaging analysis revealed that the inhibition of CLIP-170 Ser-311 phosphorylation by AMPK leads to the accumulation of MTs at the intercalated disks. Interestingly, MYK-461 increased the individual cell area of cardiomyocytes in CLIP-170 phosphorylation-dependent manner. Moreover, heart-specific CLIP-170 S311A transgenic mice demonstrated elongation of cardiomyocytes along with accumulated MTs, leading to progressive decline in cardiac contraction. In conclusion, these findings suggest that AMPK regulates the cell shape and aspect ratio of cardiomyocytes by modulating the turnover of MTs through homeostatic phosphorylation of CLIP-170 at the intercalated disks.


Assuntos
Proteínas Quinases Ativadas por AMP , Miócitos Cardíacos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Forma Celular , Camundongos , Proteínas Associadas aos Microtúbulos , Microtúbulos/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Neoplasias , Fosforilação
2.
FASEB J ; 34(1): 1859-1871, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914602

RESUMO

The respiratory chain (RC) transports electrons to form a proton motive force that is required for ATP synthesis in the mitochondria. RC disorders cause mitochondrial diseases that have few effective treatments; therefore, novel therapeutic strategies are critically needed. We previously identified Higd1a as a positive regulator of cytochrome c oxidase (CcO) in the RC. Here, we test that Higd1a has a beneficial effect by increasing CcO activity in the models of mitochondrial dysfunction. We first demonstrated the tissue-protective effects of Higd1a via in situ measurement of mitochondrial ATP concentrations ([ATP]mito) in a zebrafish hypoxia model. Heart-specific Higd1a overexpression mitigated the decline in [ATP]mito under hypoxia and preserved cardiac function in zebrafish. Based on the in vivo results, we examined the effects of exogenous HIGD1A on three cellular models of mitochondrial disease; notably, HIGD1A improved respiratory function that was coupled with increased ATP synthesis and demonstrated cellular protection in all three models. Finally, enzyme kinetic analysis revealed that Higd1a significantly increased the maximal velocity of the reaction between CcO and cytochrome c without changing the affinity between them, indicating that Higd1a is a positive modulator of CcO. These results corroborate that Higd1a, or its mimic, provides therapeutic options for the treatment of mitochondrial diseases.


Assuntos
Transporte de Elétrons/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Biológico/fisiologia , Linhagem Celular , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Hipóxia/metabolismo , Cinética , Oxirredução , Respiração , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...