Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5941, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741818

RESUMO

The ability of the pluripotent epiblast to contribute progeny to all three germ layers is thought to be lost after gastrulation. The later-forming neural crest (NC) rises from ectoderm and it remains poorly understood how its exceptionally high stem-cell potential to generate mesodermal- and endodermal-like derivatives is obtained. Here, we monitor transcriptional changes from gastrulation to neurulation using single-cell-Multiplex-Spatial-Transcriptomics (scMST) complemented with RNA-sequencing. We show maintenance of pluripotency-like signature (Nanog, Oct4/PouV, Klf4-positive) in undecided pan-ectodermal stem-cells spanning the entire ectoderm late during neurulation with ectodermal patterning completed only at the end of neurulation when the pluripotency-like signature becomes restricted to NC, challenging our understanding of gastrulation. Furthermore, broad ectodermal pluripotency-like signature is found at multiple axial levels unrelated to the NC lineage the cells later commit to, suggesting a general role in stemness enhancement and proposing a mechanism by which the NC acquires its ability to form derivatives beyond "ectodermal-capacity" in chick and mouse embryos.


Assuntos
Ectoderma , Células-Tronco Neurais , Animais , Camundongos , Crista Neural , Camadas Germinativas , Galinhas
2.
Nat Commun ; 14(1): 4499, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495603

RESUMO

The molecular mechanisms that coordinate patterning of the embryonic ectoderm into spatially distinct lineages to form the nervous system, epidermis, and neural crest-derived craniofacial structures are unclear. Here, biochemical disease-variant profiling reveals a posttranslational pathway that drives early ectodermal differentiation in the vertebrate head. The anteriorly expressed ubiquitin ligase CRL3-KLHL4 restricts signaling of the ubiquitous cytoskeletal regulator CDC42. This regulation relies on the CDC42-activating complex GIT1-ßPIX, which CRL3-KLHL4 exploits as a substrate-specific co-adaptor to recognize and monoubiquitylate PAK1. Surprisingly, we find that ubiquitylation converts the canonical CDC42 effector PAK1 into a CDC42 inhibitor. Loss of CRL3-KLHL4 or a disease-associated KLHL4 variant reduce PAK1 ubiquitylation causing overactivation of CDC42 signaling and defective ectodermal patterning and neurulation. Thus, tissue-specific restriction of CDC42 signaling by a ubiquitin-based effector-to-inhibitor is essential for early face, brain, and skin formation, revealing how cell-fate and morphometric changes are coordinated to ensure faithful organ development.


Assuntos
Crista Neural , Ubiquitina , Encéfalo , Ectoderma , Transdução de Sinais
3.
Neural Dev ; 15(1): 9, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723364

RESUMO

BACKGROUND: Spatial patterning specifies neural progenitor identity, with further diversity generated by temporal patterning within individual progenitor lineages. In vertebrates, these mechanisms generate "cardinal classes" of neurons that share a transcription factor identity and common morphology. In Drosophila, two cardinal classes are Even-skipped (Eve)+ motor neurons projecting to dorsal longitudinal muscles, and Nkx6+ motor neurons projecting to ventral oblique muscles. Cross-repressive interactions prevent stable double-positive motor neurons. The Drosophila neuroblast 7-1 (NB7-1) lineage uses a temporal transcription factor cascade to generate five distinct Eve+ motor neurons; the origin and development of Nkx6+ motor neurons remains unclear. METHODS: We use a neuroblast specific Gal4 line, sparse labelling and molecular markers to identify an Nkx6+ VO motor neuron produced by the NB7-1 lineage. We use lineage analysis to birth-date the VO motor neuron to the Kr+ Pdm+ neuroblast temporal identity window. We use gain- and loss-of-function strategies to test the role of Kr+ Pdm+ temporal identity and the Nkx6 transcription factor in specifying VO neuron identity. RESULTS: Lineage analysis identifies an Nkx6+ neuron born from the Kr+ Pdm+ temporal identity window in the NB7-1 lineage, resulting in alternation of cardinal motor neuron subtypes within this lineage (Eve>Nkx6 > Eve). Co-overexpression of Kr/Pdm generates ectopic VO motor neurons within the NB7-1 lineage - the first evidence that this TTF combination specifies neuronal identity. Moreover, the Kr/Pdm combination promotes Nkx6 expression, which itself is necessary and sufficient for motor neuron targeting to ventral oblique muscles, thereby revealing a molecular specification pathway from temporal patterning to cardinal transcription factor expression to motor neuron target selection. CONCLUSIONS: We show that one neuroblast lineage generates interleaved cardinal motor neurons fates; that the Kr/Pdm TTFs form a novel temporal identity window that promotes expression of Nkx6; and that the Kr/Pdm > Nkx6 pathway is necessary and sufficient to promote VO motor neuron targeting to the correct ventral muscle group.


Assuntos
Padronização Corporal/fisiologia , Linhagem da Célula/fisiologia , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Células-Tronco Neurais/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Animais , Linhagem Celular , Drosophila melanogaster
4.
J Vis Exp ; (73): e50253, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23524402

RESUMO

Much information about the coupling of presynaptic ionic currents with the release of neurotransmitter has been obtained from invertebrate preparations, most notably the squid giant synapse. However, except for the preparation described here, few vertebrate preparations exist in which it is possible to make simultaneous measurements of neurotransmitter release and presynaptic ionic currents. Embryonic Xenopus motoneurons and muscle cells can be grown together in simple culture medium at room temperature; they will form functional synapses within twelve to twenty-four hours, and can be used to study nerve and muscle cell development and synaptic interactions for several days (until overgrowth occurs). Some advantages of these co-cultures over other vertebrate preparations include the simplicity of preparation, the ability to maintain the cultures and work at room temperature, and the ready accessibility of the synapses formed. The preparation has been used widely to study the biophysical properties of presynaptic ion channels and the regulation of transmitter release. In addition, the preparation has lent itself to other uses including the study of neurite outgrowth and synaptogenesis, molecular mechanisms of neurotransmitter release, the role of diffusible messengers in neuromodulation, and in vitro synaptic plasticity.


Assuntos
Neurônios Motores/fisiologia , Músculos/inervação , Junção Neuromuscular/fisiologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Potenciais Sinápticos/fisiologia , Animais , Técnicas de Cocultura/métodos , Fenômenos Eletrofisiológicos , Embrião não Mamífero , Feminino , Masculino , Neurônios Motores/citologia , Músculos/citologia , Junção Neuromuscular/citologia , Técnicas de Patch-Clamp/métodos , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...