Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32427581

RESUMO

BACKGROUNDMalaria pathogenicity is determined, in part, by the adherence of Plasmodium falciparum-infected erythrocytes to the microvasculature mediated via specific interactions between P. falciparum erythrocyte membrane protein (PfEMP1) variant domains and host endothelial receptors. Naturally acquired antibodies against specific PfEMP1 variants can play an important role in clinical protection against malaria.METHODSWe evaluated IgG responses against a repertoire of PfEMP1 CIDR domain variants to determine the rate and order of variant-specific antibody acquisition and their association with protection against febrile malaria in a prospective cohort study conducted in an area of intense, seasonal malaria transmission.RESULTSUsing longitudinal data, we found that IgG antibodies against the pathogenic domain variants CIDRα1.7 and CIDRα1.8 were acquired the earliest. Furthermore, IgG antibodies against CIDRγ3 were associated with reduced prospective risk of febrile malaria and recurrent malaria episodes.CONCLUSIONThis study provides evidence that acquisition of IgG antibodies against PfEMP1 variants is ordered and demonstrates that antibodies against CIDRα1 domains are acquired the earliest in children residing in an area of intense, seasonal malaria transmission. Future studies will need to validate these findings in other transmission settings and determine the functional activity of these naturally acquired CIDR variant-specific antibodies.TRIAL REGISTRATIONClinicalTrials.gov NCT01322581.FUNDINGDivision of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.


Assuntos
Imunoglobulina G/sangue , Malária Falciparum/imunologia , Malária/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Anticorpos Antiprotozoários/sangue , Eritrócitos/imunologia , Humanos , Estudos Prospectivos
2.
Cell Rep ; 13(2): 425-39, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26440897

RESUMO

Malaria-specific antibody responses are short lived in children, leaving them susceptible to repeated bouts of febrile malaria. The cellular and molecular mechanisms underlying this apparent immune deficiency are poorly understood. Recently, T follicular helper (Tfh) cells have been shown to play a critical role in generating long-lived antibody responses. We show that Malian children have resting PD-1(+)CXCR5(+)CD4(+) Tfh cells in circulation that resemble germinal center Tfh cells phenotypically and functionally. Within this population, PD-1(+)CXCR5(+)CXCR3(-) Tfh cells are superior to Th1-polarized PD-1(+)CXCR5(+)CXCR3(+) Tfh cells in helping B cells. Longitudinally, we observed that malaria drives Th1 cytokine responses, and accordingly, the less-functional Th1-polarized Tfh subset was preferentially activated and its activation did not correlate with antibody responses. These data provide insights into the Tfh cell biology underlying suboptimal antibody responses to malaria in children and suggest that vaccine strategies that promote CXCR3(-) Tfh cell responses may improve malaria vaccine efficacy.


Assuntos
Linfócitos B/imunologia , Ativação Linfocitária , Malária/imunologia , Células Th1/imunologia , Criança , Feminino , Humanos , Malária/sangue , Masculino , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...