Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(49): 47034-47050, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107884

RESUMO

In this study, polyamide 6 (PA6)/thermoplastic elastomer (TPE) blends were prepared to decrease the notch sensitivity of PA6 for automotive applications, and the morphological, rheological, mechanical, and thermal properties of PA6/TPE blends, which are partially miscible or immiscible depending on the TPE ratio, were significantly improved in the existence of polyhedral oligomeric silsesquioxane (POSS) nanoparticles with multiple reactive epoxy groups as compatibilizers. An unstable phase morphology was obtained with the addition of TPE into PA6 without POSS nanoparticles, whereas interfacial interactions between phases in the presence of POSS were enhanced as a result of a significant decrease in the average particle size from 1.39 to 0.41 µm. The complex viscosity value of the 70PA6/30TPE blend, which was 20 kPa/s-1 at 0.1 rad/s angular frequency, reached 380 kPa/s-1 with the addition of POSS due to the formation of long chains by the generation of graft and/or block copolymers, which resulted in a 65% increase in Young's modulus value. Most notably, the Izod impact strength of pure PA6, which was 10 kJ/m2, increased by 290% with the incorporation of POSS. It was confirmed by FTIR analysis that the reactive multiple epoxy groups of MultEpPOSS and EPPOSS nanoparticles react with the proper groups of PA6 and/or TPE, and also, a partial hydrogen bonding interaction occurs between PA6-TPE from the shifting of N-H and carbonyl peaks. In conclusion, it can be suggested that POSS nanoparticles can serve as highly effective compatibilizers for PA6/TPE blends and have potential commercial applications, especially in the automotive sector.

2.
Polymers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38231911

RESUMO

The development of thermally conductive rubber nanocomposites for heat management poses a formidable challenge in numerous applications, notably within the realm of tire technology. Notably, rubber materials are characterized by their inherently low thermal conductivity. Consequently, it becomes imperative to incorporate diverse conductive fillers to mitigate the propensity for heat build-up. Multi-walled carbon nanotubes (MWCNTs), as reinforcement agents within the tire tread compounds, have gained considerable attention owing to their extraordinary attributes. The attainment of high-performance rubber nanocomposites hinges significantly on the uniform distribution of MWCNT. This study presents the influence of MWCNTs on the performance of carbon black (CB)-reinforced natural rubber (NR)/styrene butadiene rubber (SBR) tire compounds prepared via high shear melt mixing. Morphological analysis showed a good distribution of MWCNTs in the NR/SBR/CB compound. The vulcanization parameters, such as the maximum and minimum torque, cross-linking density, hardness, abrasion resistance, tensile strength, and Young modulus, exhibited a progressive improvement with the addition of MWCNT. Remarkably, adding MWCNT into CB improved the heat conductivity of the NR/SBR/CB compounds, hence decreasing the heat build-up. A percolation mode was also proposed for the hybrid carbon fillers based on the data obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...