Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 173(1): 524-535, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27821720

RESUMO

Arabidopsis (Arabidopsis thaliana) GOLDEN2-LIKE (GLK) transcription factors promote chloroplast biogenesis by regulating the expression of photosynthesis-related genes. Arabidopsis GLK1 is also known to participate in retrograde signaling from chloroplasts to the nucleus. To elucidate the mechanism by which GLK1 is regulated in response to plastid signals, we biochemically characterized Arabidopsis GLK1 protein. Expression analysis of GLK1 protein indicated that GLK1 accumulates in aerial tissues. Both tissue-specific and Suc-dependent accumulation of GLK1 were regulated primarily at the transcriptional level. In contrast, norflurazon- or lincomycin-treated gun1-101 mutant expressing normal levels of GLK1 mRNA failed to accumulate GLK1 protein, suggesting that plastid signals directly regulate the accumulation of GLK1 protein in a GUN1-independent manner. Treatment of the glk1glk2 mutant expressing functional GFP-GLK1 with a proteasome inhibitor, MG-132, induced the accumulation of polyubiquitinated GFP-GLK1. Furthermore, the level of endogenous GLK1 in plants with damaged plastids was partially restored when those plants were treated with MG-132. Collectively, these data indicate that the ubiquitin-proteasome system participates in the degradation of Arabidopsis GLK1 in response to plastid signals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plastídeos/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Leupeptinas/farmacologia , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Fatores de Transcrição/genética
2.
Plant Cell Environ ; 35(3): 554-66, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21955303

RESUMO

Floral thermogenesis has been described in several plant species. Because of the lack of comprehensive gene expression profiles in thermogenic plants, the molecular mechanisms by which floral thermogenesis is regulated remain to be established. We examined the gene expression landscape of skunk cabbage (Symplocarpus renifolius) during thermogenic and post-thermogenic stages and identified expressed sequence tags from different developmental stages of the inflorescences using super serial analysis of gene expression (SuperSAGE). In-depth analysis suggested that cellular respiration and mitochondrial functions are significantly enhanced during the thermogenic stage. In contrast, genes involved in stress responses and protein degradation were significantly up-regulated during post-thermogenic stages. Quantitative comparisons indicated that the expression levels of genes involved in cellular respiration were higher in thermogenic spadices than in Arabidopsis inflorescences. Thermogenesis-associated genes seemed to be expressed abundantly in the peripheral tissues of the spadix. Our results suggest that cellular respiration and mitochondrial metabolism play key roles in heat production during floral thermogenesis. On the other hand, vacuolar cysteine protease and other degradative enzymes seem to accelerate senescence and terminate thermogenesis in the post-thermogenic stage.


Assuntos
Araceae/genética , Flores/fisiologia , Mitocôndrias/metabolismo , Temperatura , Vacúolos/metabolismo , Araceae/fisiologia , Respiração Celular , Análise por Conglomerados , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , RNA de Plantas/genética , Transcriptoma
3.
J Exp Bot ; 63(1): 251-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21926093

RESUMO

Retrograde signalling from the plastid to the nucleus, also known as plastid signalling, plays a key role in coordinating nuclear gene expression with the functional state of plastids. Inhibitors that cause plastid dysfunction have been suggested to generate specific plastid signals related to their modes of action. However, the molecules involved in plastid signalling remain to be identified. Genetic studies indicate that the plastid-localized pentatricopeptide repeat protein GUN1 mediates signalling under several plastid signalling-related conditions. To elucidate further the nature of plastid signals, investigations were carried out to determine whether different plastid signal-inducing treatments had similar effects on plastids and on nuclear gene expression. It is demonstrated that norflurazon and lincomycin treatments and the plastid protein import2-2 (ppi2-2) mutation, which causes a defect in plastid protein import, all resulted in similar changes at the gene expression level. Furthermore, it was observed that these three treatments resulted in defective RNA editing in plastids. This defect in RNA editing was not a secondary effect of down-regulation of pentatricopeptide repeat protein gene expression in the nucleus. The results indicate that these three treatments, which are known to induce plastid signals, affect RNA editing in plastids, suggesting an unprecedented link between plastid signalling and RNA editing.


Assuntos
Plastídeos , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes de Plantas , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Transcrição Gênica
4.
Int Rev Cell Mol Biol ; 290: 167-204, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21875565

RESUMO

Plastids are a diverse group of organelles found in plants and some parasites. Because genes encoding plastid proteins are divided between the nuclear and plastid genomes, coordinated expression of genes in two separate genomes is indispensable for plastid function. To coordinate nuclear gene expression with the functional or metabolic state of plastids, plant cells have acquired a retrograde signaling pathway from plastid to nucleus, also known as the plastid signaling pathway. To date, several metabolic processes within plastids have been shown to affect the expression of nuclear genes. Recent progress in this field has also revealed that the plastid signaling pathway interacts and shares common components with other intracellular signaling pathways. This review summarizes our current knowledge on retrograde signaling from plastid to nucleus in plant cells and its role in plant growth and development.


Assuntos
Núcleo Celular/metabolismo , Células Vegetais/metabolismo , Plastídeos/metabolismo , Transdução de Sinais , Núcleo Celular/genética , Desenvolvimento Vegetal , Plantas/metabolismo , Plastídeos/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...