Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1710, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402227

RESUMO

An important challenge in active matter lies in harnessing useful global work from entities that produce work locally, e.g., via self-propulsion. We investigate here the active matter version of a classical capillary rise effect, by considering a non-phase separated sediment of self-propelled Janus colloids in contact with a vertical wall. We provide experimental evidence of an unexpected and dynamic adsorption layer at the wall. Additionally, we develop a complementary numerical model that recapitulates the experimental observations. We show that an adhesive and aligning wall enhances the pre-existing polarity heterogeneity within the bulk, enabling polar active particles to climb up a wall against gravity, effectively powering a global flux. Such steady-state flux has no equivalent in a passive wetting layer.

2.
Proc Natl Acad Sci U S A ; 120(25): e2221304120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307490

RESUMO

Liquid and ionic transport through nanometric structures is central to many phenomena, ranging from cellular exchanges to water resource management or green energy conversion. While pushing down toward molecular scales progressively unveils novel transport behaviors, reaching ultimate confinement in controlled systems remains challenging and has often involved 2D Van der Waals materials. Here, we propose an alternative route which circumvents demanding nanofabrication steps, partially releases material constraints, and offers continuously tunable molecular confinement. This soft-matter-inspired approach is based on the spontaneous formation of a molecularly thin liquid film onto fully wettable substrates in contact with the vapor phase of the liquid. Using silicon dioxide substrates, water films ranging from angstrom to nanometric thicknesses are formed in this manner, and ionic transport within the film can then be measured. Performing conductance measurements as a function of confinement in these ultimate regimes reveals a one-molecule thick layer of fully hindered transport nearby the silica, above which continuum, bulk-like approaches account for experimental results. Overall, this work paves the way for future investigations of molecular scale nanofluidics and provides insights into ionic transport nearby high surface energy materials such as natural rocks and clays, building concretes, or nanoscale silica membranes used for separation and filtering.

3.
J Chem Phys ; 156(15): 154509, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35459302

RESUMO

Among amorphous states, glass is defined by relaxation times longer than the observation time. This nonergodic nature makes the understanding of glassy systems an involved topic, with complex aging effects or responses to further out-of-equilibrium external drivings. In this respect, active glasses made of self-propelled particles have recently emerged as a stimulating systems, which broadens and challenges our current understanding of glasses by considering novel internal out-of-equilibrium degrees of freedom. In previous experimental studies we have shown that in the ergodicity broken phase, the dynamics of dense passive particles first slows down as particles are made slightly active, before speeding up at larger activity. Here, we show that this nonmonotonic behavior also emerges in simulations of soft active Brownian particles and explore its cause. We refute that the deadlock by emergence of active directionality model we proposed earlier describes our data. However, we demonstrate that the nonmonotonic response is due to activity enhanced aging and thus confirm the link with ergodicity breaking. Beyond self-propelled systems, our results suggest that aging in active glasses is not fully understood.


Assuntos
Vidro
4.
Soft Matter ; 17(38): 8705-8711, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34523665

RESUMO

Investigating the electrokinetic (EK) response in the vicinity of interfaces has regained interest due to the development of new membrane based processes for energy harvesting or soil depollution. However, the case of reactive interfaces, ubiquitous in these processes, remains scarcely explored. Here we experimentally investigate the EK response of a model interface between an aqueous electrolyte and a bulk MgO crystal surface (100), for different pH. For that purpose, we use a lab-scale non invasive method to monitor the zeta potential of the interface versus time, by confocal fluorescent particle tracking. An unexpected motion of the particles, repelled and then attracted again by the interface is observed. We attributed this motion to the surface reactivity, inducing ion concentration gradients perpendicular to the interface and subsequent diffusiophoresis of the charged particle. Accordingly, we could describe at a semi-quantitative level the particle dynamics by solving numerically the Poisson-Nernst-Planck equations to establish concentration profile in the system and subsequent diffusiophoretic motion. These experiments open the way to the characterization of both the EK response and the reaction rate in the vicinity of reactive interfaces.

5.
Phys Rev E ; 104(6-1): 064608, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030840

RESUMO

We numerically study the dynamics of an ensemble of Marangoni surfers in a two-dimensional and unconfined space. The swimmers are modeled as Gaussian sources of surfactant generating surface tension gradients and are shown to follow the Marangoni flow filtered at their spatial scale in the lubrication regime, an unstable situation leading to spontaneous motion as soon as the Marangoni effect is intense enough. As the system is fully unconstrained, it is possible to study the various dynamical regimes from single swimmer, two-body interaction, to the many-particles case characterized by an efficient particle dispersion. We show that, although the present model is very simple, it reproduces the experimentally observed transition between a regime of dispersion by random agitation when the number of swimmers is moderate to the regime of crystallization with imperfect hexagonal lattice at high density.

6.
Phys Rev E ; 99(6-1): 062605, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31330666

RESUMO

Solid undeformable particles surrounded by a liquid medium or interface may propel themselves by altering their local environment. Such nonmechanical swimming is at work in autophoretic swimmers, whose self-generated field gradient induces a slip velocity on their surface, and in interfacial swimmers, which exploit unbalance in surface tension. In both classes of systems, swimmers with intrinsic asymmetry have received the most attention but self-propulsion is also possible for particles that are perfectly isotropic. The underlying symmetry-breaking instability has been established theoretically for autophoretic systems but has yet to be observed experimentally for solid particles. For interfacial swimmers, several experimental works point to such a mechanism, but its understanding has remained incomplete. The goal of this work is to fill this gap. Building on an earlier proposal, we first develop a point-source model that may be applied generically to interfacial or phoretic swimmers. Using this approximate but unifying picture, we show that they operate in very different regimes and obtain analytical predictions for the propulsion velocity and its dependence on swimmer size and asymmetry. Next, we present experiments on interfacial camphor disks showing that they indeed self-propel in an advection-dominated regime where intrinsic asymmetry is irrelevant and that the swimming velocity increases sublinearly with size. Finally, we discuss the merits and limitations of the point-source model in light of the experiments and point out its broader relevance.

7.
Phys Rev Lett ; 123(24): 248004, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922864

RESUMO

We study experimentally the response of a dense sediment of Brownian particles to self-propulsion. We observe that the ergodic supercooled liquid relaxation is monotonically enhanced by activity. By contrast the nonergodic glass shows an order of magnitude slowdown at low activities with respect to the passive case, followed by fluidization at higher activities. Our results contrast with theoretical predictions of the ergodic approach to glass transition, summing up to a shift of the glass line. We propose that nonmonotonicity is due to competing effects of activity: (i) extra energy that helps breaking cages; (ii) directionality that hinders cage exploration. We call it "deadlock from the emergence of active directionality." It suggests further theoretical works should include thermal motion.

8.
Phys Rev E ; 100(6-1): 062603, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31962398

RESUMO

We study experimentally a sediment of self-propelled Brownian particles with densities ranging from dilute to ergodic supercooled to nonergodic glass to nonergodic polycrystal. In a companion paper, we observe a nonmonotonic response to activity of relaxation of the nonergodic glass state: a dramatic slowdown when particles become weakly self-propelled, followed by a speedup at higher activities. Here we map ergodic supercooled states to standard passive glassy physics, provided a monotonic shift of the glass packing fraction and the replacement of the ambient temperature by the effective temperature. However, we show that this mapping fails beyond glass transition. This failure is responsible for the nonmonotonic response. Furthermore, we generalize our finding by examining the dynamical response of another class of nonergodic systems: polycrystals. We observe the same nonmonotonic response to activity. To explain this phenomenon, we measure the size of domains where particles move in the same direction. This size also shows a nonmonotonic response, with small lengths corresponding to slow relaxation. This suggests that the failure of the mapping of nonergodic active states to a passive situation is general and is linked to anisotropic relaxation mechanisms specific to active matter.

9.
J Chem Phys ; 151(24): 244503, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893893

RESUMO

Despite mass flow being arguably the most elementary transport associated with nanofluidics, its measurement still constitutes a significant bottleneck for the development of this promising field. Here, we investigate how a liquid flow perturbs the ubiquitous enrichment-or depletion-of a solute inside a single nanochannel. Using fluorescence correlation spectroscopy to access the local solute concentration, we demonstrate that the initial enrichment-the so-called Donnan equilibrium-is depleted under flow, thus revealing the underlying mass transport. Combining theoretical and numerical calculations beyond the classical 1D treatment of nanochannels, we rationalize quantitatively our observations and demonstrate unprecedented flow rate sensitivity. Because the present mass transport investigations are based on generic effects, we believe that they can develop into a versatile approach for nanofluidics.

10.
Soft Matter ; 14(14): 2604-2609, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29492490

RESUMO

Generation of an electroosmostic (EO) flow near a liquid-gas interface covered with ionic surfactants is experimentally investigated. A combination of microscopic flow measurements with a molecular characterization of the interface by second harmonic generation (SHG) shows that under an electrical forcing, although a liquid flow is generated below the free surface, the surfactants remain immobile. The zeta potential was then determined and compared to the surfactant surface coverage. This combination of experimental techniques opens the route to simultaneously probe the liquid flow near a soapy interface and the corresponding surfactant repartition affecting the hydrodynamic boundary condition.

11.
Adv Colloid Interface Sci ; 247: 477-490, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28662766

RESUMO

Investigating electrokinetic transport in a liquid foam is at the confluence of two well developed research areas. On one hand, the study of electrokinetic flows (i.e. surface-driven flows generated close to a charged interface) is fairly well understood in regards the solid/liquid interface. On the other hand, the flow of liquid in a 3D deformable network, i.e a foam, under a volume force such as gravity has been thoroughly studied over the past decade. The overlapping zone of these two frameworks is of great interest for both communities as it gives rise to challenging new questions such as: what is the importance of the nature of the charged interface, created by mobile and soluble surfactants in the case of foam, on electrokinetic transport? How does a foam behave when submitted to a surface-driven flow? Can we compensate a volume-driven flow, i.e. gravity, by a surface-driven flow, i.e. electroosmosis? In this review, we will explore these questions on three different scales: a surfactant laden interface, a foam film and a macroscopic foam.

12.
Eur Phys J E Soft Matter ; 40(1): 5, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28097479

RESUMO

Understanding the relationship between the material structural details, the geometrical confining constraints, the local dynamical events and the global rheological response is at the core of present investigations on complex fluid properties. In the present article, this problem is addressed on a model yield stress fluid made of highly entangled polymer gels of Carbopol which follows at the macroscopic scale the well-known Herschel-Bulkley rheological law. First, performing local rheology measurements up to high shear rates ([Formula: see text] s-1)and under confinement, we evidence unambiguously the breakdown of bulk rheology associated with cooperative processes under flow. Moreover, we show that these behaviors are fully captured with a unique cooperativity length [Formula: see text] over the whole range of experimental conditions. Second, we introduce an original optical microscopy method to access structural properties of the entangled polymer gel in the direct space. Performing image correlation spectroscopy of fluorophore-loaded gels, the characteristic size D of carbopol gels microstructure is determined as a function of preparation protocol. Combining both dynamical and structural information shows that the measured cooperative length [Formula: see text] corresponds to 2-5 times the underlying structural size D, thus providing a strong grounding to the "Shear Transformation Zones" modeling approach.

13.
J Chem Phys ; 145(12): 124708, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27782663

RESUMO

We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely, carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale "graphene-oxide" like membranes then opens an avenue for a versatile and efficient ethanol dehydration using this separation process, with possible application for bio-ethanol fabrication.

14.
Phys Rev Lett ; 116(16): 168101, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152825

RESUMO

Magnetotactic swimmers tend to align along magnetic field lines against stochastic reorientations. We show that the swimming strategy, e.g., active Brownian motion versus run-and-tumble dynamics, strongly affects the orientation statistics. The latter can exhibit a velocity condensation whereby the alignment probability density diverges. As a consequence, we find that the swimming strategy affects the nature of the phase transition to collective motion, indicating that Lévy run-and-tumble walks can outperform active Brownian processes as strategies to trigger collective behavior.


Assuntos
Bactérias , Campos Magnéticos , Modelos Biológicos , Fenômenos Fisiológicos Bacterianos , Fenômenos Biomecânicos , Difusão , Movimento , Torque
15.
Phys Rev E ; 93(3): 033123, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078463

RESUMO

This work revisits capillary filling dynamics in the regime of nanometric to subnanometric channels. Using molecular dynamics simulations of water in carbon nanotubes, we show that for tube radii below one nanometer, both the filling velocity and the Jurin rise vary nonmonotonically with the tube radius. Strikingly, with fixed chemical surface properties, this leads to confinement-induced reversal of the tube wettability from hydrophilic to hydrophobic for specific values of the radius. By comparing with a model liquid metal, we show that these effects are not specific to water. Using complementary data from slit channels, we then show that they can be described using the disjoining pressure associated with the liquid structuring in confinement. This breakdown of the standard continuum framework is of main importance in the context of capillary effects in nanoporous media, with potential interests ranging from membrane selectivity to mechanical energy storage.

16.
Soft Matter ; 11(23): 4592-9, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25959867

RESUMO

Despite the fact that superhydrophobic surfaces possess useful and unique properties, their practical application has remained limited by durability issues. Among those, the wetting transition, whereby a surface gets impregnated by the liquid and permanently loses its superhydrophobicity, certainly constitutes the most limiting aspect under many realistic conditions. In this study, we revisit this so-called Cassie-to-Wenzel transition (CWT) under the broadly encountered situation of liquid drop impact. Using model hydrophobic micropillar surfaces of various geometrical characteristics and high speed imaging, we identify that CWT can occur through different mechanisms, and at different impact stages. At early impact stages, right after contact, CWT occurs through the well established dynamic pressure scenario of which we provide here a fully quantitative description. Comparing the critical wetting pressure of surfaces and the theoretical pressure distribution inside the liquid drop, we provide not only the CWT threshold but also the hardly reported wetted area which directly affects the surface spoiling. At a later stage, we report for the first time to our knowledge, a new CWT which occurs during the drop recoil toward bouncing. With the help of numerical simulations, we discuss the mechanism underlying this new transition and provide a simple model based on impulse conservation which successfully captures the transition threshold. By shedding light on the complex interaction between impacting water drops and surface structures, the present study will facilitate designing superhydrophobic surfaces with a desirable wetting state during drop impact.

17.
Med Sci (Paris) ; 31(2): 174-9, 2015 Feb.
Artigo em Francês | MEDLINE | ID: mdl-25744264

RESUMO

Aquaporins are transmembrane proteins, ubiquitous in the human body. Inserted into the cell membranes, they play an important role in filtration, absorption and secretion of fluids. However, the excellent compromise between selectivity and permeability of aquaporins remains elusive. In this review, we focus on the hourglass shape of aquaporins, and we investigate its influence on water permeability, using numerical calculations and a simple theoretical model. We show that there is an optimum opening angle that maximizes the hydrodynamic permeability, and whose value is close to the angles observed in aquaporins.


Assuntos
Aquaporinas/metabolismo , Algoritmos , Animais , Aquaporinas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Permeabilidade da Membrana Celular , Humanos , Hidrodinâmica , Modelos Químicos , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/fisiologia , Conformação Proteica , Relação Estrutura-Atividade , Água/metabolismo
18.
J Chem Phys ; 141(18): 18C526, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25399191

RESUMO

In fluid transport across nanopores, there is a fundamental dissipation that arises from the connection between the pore and the macroscopic reservoirs. This entrance effect can hinder the whole transport in certain situations, for short pores and/or highly slipping channels. In this paper, we explore the hydrodynamic permeability of hourglass shape nanopores using molecular dynamics (MD) simulations, with the central pore size ranging from several nanometers down to a few Angströms. Surprisingly, we find a very good agreement between MD results and continuum hydrodynamic predictions, even for the smallest systems undergoing single file transport of water. An optimum of permeability is found for an opening angle around 5°, in agreement with continuum predictions, yielding a permeability five times larger than for a straight nanotube. Moreover, we find that the permeability of hourglass shape nanopores is even larger than single nanopores pierced in a molecular thin graphene sheet. This suggests that designing the geometry of nanopores may help considerably increasing the macroscopic permeability of membranes.

19.
Soft Matter ; 10(27): 4795-9, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24909866

RESUMO

Efficient mixing of colloids, particles or molecules is a central issue in many processes. It results from the complex interplay between flow deformations and molecular diffusion, which is generally assumed to control the homogenization processes. In this work we demonstrate on the contrary that despite fixed flow and self-diffusion conditions, the chaotic mixing of colloidal suspensions can be either boosted or inhibited by the sole addition of a trace amount of salt as a co-mixing species. Indeed, this shows that local saline gradients can trigger a chemically driven transport phenomenon, diffusiophoresis, which controls the rate and direction of molecular transport far more efficiently than the usual Brownian diffusion. A simple model combining the elementary ingredients of chaotic mixing with diffusiophoretic transport of the colloids allows rationalization of our observations and highlights how small-scale out-of-equilibrium transport bridges to mixing at much larger scales in a very effective way. Considering chaotic mixing as a prototypal building block for turbulent mixing suggests that these phenomena, occurring whenever the chemical environment is inhomogeneous, might bring interesting perspectives from micro-systems to large-scale situations, with examples ranging from ecosystems to industrial contexts.

20.
Proc Natl Acad Sci U S A ; 110(41): 16367-72, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24067650

RESUMO

The ubiquitous aquaporin channels are able to conduct water across cell membranes, combining the seemingly antagonist functions of a very high selectivity with a remarkable permeability. Whereas molecular details are obvious keys to perform these tasks, the overall efficiency of transport in such nanopores is also strongly limited by viscous dissipation arising at the connection between the nanoconstriction and the nearby bulk reservoirs. In this contribution, we focus on these so-called entrance effects and specifically examine whether the characteristic hourglass shape of aquaporins may arise from a geometrical optimum for such hydrodynamic dissipation. Using a combination of finite-element calculations and analytical modeling, we show that conical entrances with suitable opening angle can indeed provide a large increase of the overall channel permeability. Moreover, the optimal opening angles that maximize the permeability are found to compare well with the angles measured in a large variety of aquaporins. This suggests that the hourglass shape of aquaporins could be the result of a natural selection process toward optimal hydrodynamic transport. Finally, in a biomimetic perspective, these results provide guidelines to design artificial nanopores with optimal performances.


Assuntos
Aquaporinas/química , Modelos Moleculares , Conformação Proteica , Água/química , Transporte Biológico/fisiologia , Modelos Químicos , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...