Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytoskeleton (Hoboken) ; 72(7): 349-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26147656

RESUMO

The patterning of actin cytoskeleton structures in vivo is a product of spatially and temporally regulated polymer assembly balanced by polymer disassembly. While in recent years our understanding of actin assembly mechanisms has grown immensely, our knowledge of actin disassembly machinery and mechanisms has remained comparatively sparse. Saccharomyces cerevisiae is an ideal system to tackle this problem, both because of its amenabilities to genetic manipulation and live-cell imaging and because only a single gene encodes each of the core disassembly factors: cofilin (COF1), Srv2/CAP (SRV2), Aip1 (AIP1), GMF (GMF1/AIM7), coronin (CRN1), and twinfilin (TWF1). Among these six factors, only the functions of cofilin are essential and have been well defined. Here, we investigated the functions of the nonessential actin disassembly factors by performing genetic and live-cell imaging analyses on a combinatorial set of isogenic single, double, triple, and quadruple mutants in S. cerevisiae. Our results show that each disassembly factor makes an important contribution to cell viability, actin organization, and endocytosis. Further, our data reveal new relationships among these factors, providing insights into how they work together to orchestrate actin turnover. Finally, we observe specific combinations of mutations that are lethal, e.g., srv2Δ aip1Δ and srv2Δ crn1Δ twf1Δ, demonstrating that while cofilin is essential, it is not sufficient in vivo, and that combinations of the other disassembly factors perform vital functions.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Citoesqueleto de Actina/genética , Fatores de Despolimerização de Actina/genética , Actinas/genética , Actinas/metabolismo , Western Blotting , Técnicas de Inativação de Genes , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Nat Commun ; 6: 7202, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25995115

RESUMO

The mechanisms by which cells destabilize and rapidly disassemble filamentous actin networks have remained elusive; however, Coronin, Cofilin and AIP1 have been implicated in this process. Here using multi-wavelength single-molecule fluorescence imaging, we show that mammalian Cor1B, Cof1 and AIP1 work in concert through a temporally ordered pathway to induce highly efficient severing and disassembly of actin filaments. Cor1B binds to filaments first, and dramatically accelerates the subsequent binding of Cof1, leading to heavily decorated, stabilized filaments. Cof1 in turn recruits AIP1, which rapidly triggers severing and remains bound to the newly generated barbed ends. New growth at barbed ends generated by severing was blocked specifically in the presence of all three proteins. This activity enabled us to reconstitute and directly visualize single actin filaments being rapidly polymerized by formins at their barbed ends while simultanteously being stochastically severed and capped along their lengths, and disassembled from their pointed ends.


Assuntos
Citoesqueleto de Actina/metabolismo , Cofilina 1/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Escherichia coli , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Coelhos
3.
Mol Biol Cell ; 25(11): 1730-43, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24719456

RESUMO

Asymmetric cell growth and division rely on polarized actin cytoskeleton remodeling events, the regulation of which is poorly understood. In budding yeast, formins stimulate the assembly of an organized network of actin cables that direct polarized secretion. Here we show that the Fer/Cip4 homology-Bin amphiphysin Rvs protein Hof1, which has known roles in cytokinesis, also functions during polarized growth by directly controlling the activities of the formin Bnr1. A mutant lacking the C-terminal half of Hof1 displays misoriented and architecturally altered cables, along with impaired secretory vesicle traffic. In vitro, Hof1 inhibits the actin nucleation and elongation activities of Bnr1 without displacing the formin from filament ends. These effects depend on the Src homology 3 domain of Hof1, the formin homology 1 (FH1) domain of Bnr1, and Hof1 dimerization, suggesting a mechanism by which Hof1 "restrains" the otherwise flexible FH1-FH2 apparatus. In vivo, loss of inhibition does not alter actin levels in cables but, instead, cable shape and functionality. Thus Hof1 tunes formins to sculpt the actin cable network.


Assuntos
Actinas/metabolismo , Polaridade Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Citoesqueleto de Actina/metabolismo , Proliferação de Células , Tamanho Celular , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/química , Mutação/genética , Fenótipo , Profilinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
4.
Curr Biol ; 23(12): 1037-45, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23727094

RESUMO

BACKGROUND: Branched actin filament networks driving cell motility, endocytosis, and intracellular transport are assembled in seconds by the Arp2/3 complex and must be equally rapidly debranched and turned over. One of the only factors known to promote debranching of actin networks is the yeast homolog of glia maturation factor (GMF), which is structurally related to the actin filament-severing protein cofilin. However, the identity of the molecular mechanism underlying debranching and whether this activity extends to mammalian GMF have remained open questions. RESULTS: Using scanning mutagenesis and total internal reflection fluorescence microscopy, we show that GMF depends on two separate surfaces for debranching. One is analogous to the G-actin and F-actin binding site on cofilin, but we show using fluorescence anisotropy and chemical crosslinking that it instead interacts with actin-related proteins in the Arp2/3 complex. The other is analogous to a second F-actin binding site on cofilin, which in GMF appears to contact the first actin subunit in the daughter filament. We further show that GMF binds to the Arp2/3 complex with low nanomolar affinity and promotes the open conformation. Finally, we show that this debranching activity and mechanism are conserved for mammalian GMF. CONCLUSIONS: GMF debranches filaments by a mechanism related to cofilin-mediated severing, but in which GMF has evolved to target molecular junctions between actin-related proteins in the Arp2/3 complex and actin subunits in the daughter filament of the branch. This activity and mechanism are conserved in GMF homologs from evolutionarily distant species.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Fator de Maturação da Glia/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cofilina 1/metabolismo , Fator de Maturação da Glia/química , Fator de Maturação da Glia/genética , Camundongos , Dados de Sequência Molecular , Mutação , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
Mol Biol Cell ; 23(7): 1208-18, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22323294

RESUMO

Cell fusion is the key event of fertilization that gives rise to the diploid zygote and is a nearly universal aspect of eukaryotic biology. In the yeast Saccharomyces cerevisiae, several mutants have been identified that are defective for cell fusion, and yet the molecular mechanism of this process remains obscure. One obstacle has been that genetic screens have mainly focused on mating-specific factors, whereas the process likely involves housekeeping proteins as well. Here we implicate Cdc42p, an essential protein with roles in multiple aspects of morphogenesis, as a core component of the yeast cell fusion pathway. We identify a point mutant in the Rho-insert domain of CDC42, called cdc42-138, which is specifically defective in cell fusion. The cell fusion defect is not a secondary consequence of ineffective signaling or polarization. Genetic and morphological data show that Cdc42p acts at a late stage in cell fusion in concert with a key cell fusion regulator, Fus2p, which contains a Dbl-homology domain. We find that Fus2p binds specifically with activated Cdc42p, and binding is blocked by the cdc42-138 mutation. Thus, in addition to signaling and morphogenetic roles in mating, Cdc42p plays a role late in cell fusion via activation of Fus2p.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Polaridade Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Genes Fúngicos , Guanosina Trifosfato/metabolismo , Fator de Acasalamento , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Peptídeos/metabolismo , Feromônios/metabolismo , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/química , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética
6.
Cytoskeleton (Hoboken) ; 68(11): 596-602, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22002930

RESUMO

Membrane protrusion at the leading edge of migrating cells is driven by the polymerization of actin. Recent studies using advanced imaging techniques raised a lively controversy about the morphology of these filaments; however, common ground between the two sides now appears to have been found. Here we discuss how the controversy has led to a deeper consideration of the architecture of actin networks underlying cell migration, and has helped define new challenges that lie ahead.


Assuntos
Citoesqueleto de Actina/metabolismo , Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo
7.
J Cell Biol ; 184(3): 409-22, 2009 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-19188495

RESUMO

When yeast cells sense mating pheromone, they undergo a characteristic response involving changes in transcription, cell cycle arrest in early G1, and polarization along the pheromone gradient. Cells in G2/M respond to pheromone at the transcriptional level but do not polarize or mate until G1. Fus2p, a key regulator of cell fusion, localizes to the tip of the mating projection during pheromone-induced G1 arrest. Although Fus2p was expressed in G2/M cells after pheromone induction, it accumulated in the nucleus until after cell division. As cells arrested in G1, Fus2p was exported from the nucleus and localized to the nascent tip. Phosphorylation of Fus2p by Fus3p was required for Fus2p export; cyclin/Cdc28p-dependent inhibition of Fus3p during late G1 through S phase was sufficient to block exit. However, during G2/M, when Fus3p was activated by pheromone signaling, Cdc28p activity again blocked Fus2p export. Our results indicate a novel mechanism by which pheromone-induced proteins are regulated during the transition from mitosis to conjugation.


Assuntos
Ciclo Celular , Núcleo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Feromônios/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina , Proteínas do Citoesqueleto/genética , Proteínas de Membrana/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
8.
Methods Mol Biol ; 475: 3-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18979235

RESUMO

Haploid yeast cells mate to form a zygote, whose progeny are diploid cells. A fundamentally sexual event, related to fertilization, yeast mating nevertheless exhibits cytological properties that appear similar to somatic cell fusion. A large collection of mutations that lead to defects in various stages of mating, including cell fusion, has allowed a detailed dissection of the overall pathway. Recent advances in imaging methods, together with powerful methods of genetic analysis, make yeast mating a superb platform for investigation of cell fusion. An understanding of yeast cell fusion will provide insight into fundamental mechanisms of cell signaling, cell polarization, and membrane fusion.


Assuntos
Núcleo Celular/metabolismo , Fusão de Membrana , Modelos Biológicos , Saccharomyces cerevisiae/citologia , Adesão Celular , Membrana Celular/metabolismo , Polaridade Celular , Parede Celular/metabolismo , Feromônios/metabolismo , Reprodução , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais
9.
J Cell Biol ; 181(4): 697-709, 2008 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-18474625

RESUMO

Fus2p is a pheromone-induced protein associated with the amphiphysin homologue Rvs161p, which is required for cell fusion during mating in Saccharomyces cerevisiae. We constructed a functional Fus2p-green fluorescent protein (GFP), which exhibits highly dynamic localization patterns in pheromone-responding cells (shmoos): diffuse nuclear, mobile cytoplasmic dots and stable cortical patches concentrated at the shmoo tip. In mitotic cells, Fus2p-GFP is nuclear but becomes cytoplasmic as cells form shmoos, dependent on the Fus3p protein kinase and high levels of pheromone signaling. The rapid cytoplasmic movement of Fus2p-GFP dots requires Rvs161p and polymerized actin and is aberrant in mutants with compromised actin organization, which suggests that the Fus2p dots are transported along actin cables, possibly in association with vesicles. Maintenance of Fus2p-GFP patches at the shmoo tip cortex is jointly dependent on actin and a membrane protein, Fus1p, which suggests that Fus1p is an anchor for Fus2p. In zygotes, Fus2p-GFP forms a dilating ring at the cell junction, returning to the nucleus at the completion of cell fusion.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Junções Intercelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Polaridade Celular/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Junções Intercelulares/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Modelos Biológicos , Mutação/genética , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Reprodução/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Tiazolidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...