Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859580

RESUMO

In the realm of organic synthesis, the catalytic and stereoselective formation of C-glycosidic bonds is a pivotal process, bridging carbohydrates with aglycones. However, the inherent chirality of the saccharide scaffold often has a substantial impact on the stereoinduction imposed by a chiral ligand. In this study, we have established an unprecedented zirconaaziridine-mediated asymmetric nickel catalysis, enabling the diastereoselective coupling of bench-stable glycosyl phosphates with a range of (hetero)aromatic and glycal iodides as feasible coupling electrophiles. Our developed method showcases a broad scope and a high tolerance for various functional groups. More importantly, precise stereocontrol toward both anomeric configurations of forming C(sp2)-glycosides can be realized by simply utilizing the popular chiral bioxazoline (biOx) ligands in this reductive Ni catalysis. Regarding the operating mechanism, both experimental and computational studies support the occurrence of a redox transmetalation process, leading to the formation of a transient, bimetallic Ni-Zr species that acts as a potent and efficient single-electron reductant in the catalytic process.

2.
Chem ; 7(7): 1963-1974, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622088

RESUMO

Transition metal-catalyzed cross-electrophile coupling (XEC) is a powerful tool for forging C(sp2)-C(sp2) bonds in biaryl molecules from abundant aromatic halides. While syntheses of unsymmetrical biaryl compounds through multimetallic XEC is of high synthetic value, selective XEC of two heteroaromatic halides remains elusive and challenging. Herein we report a homogeneous XEC method which relies on a zirconaaziridine complex as a shuttle for dual palladium catalyzed processes. The zirconaaziridine-mediated palladium (ZAPd) catalyzed reaction shows excellent compatibility with various functional groups and diverse heteroaromatic scaffolds. In accord with density functional theory (DFT) calculations, a redox-transmetallation between the oxidative addition product and the zirconaaziridine is proposed as the crucial elementary step. Thus, cross-coupling selectivity using a single transition metal catalyst is controlled by the relative rate of oxidative addition of Pd(0) into the aromatic halide. Overall, the concept of a combined reducing and transmetallating agent offers opportunities for development of transition-metal reductive coupling catalysis.

4.
J Am Chem Soc ; 140(26): 8350-8356, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29939024

RESUMO

C(sp3)-H bond functionalization has emerged as a robust tool enabling rapid construction of molecular complexity from simple building blocks, and the development of asymmetric versions of this reaction creates a powerful methodology to access enantiopure sp3-rich materials. Herein, we report the stereoselective functionalization of C(sp3)-H bonds of cyclic ethers employing a photochemically active diaryliodonium salt in combination with an anionic phase-transfer catalyst. The synthetic strategy outlined herein allows for regio- and stereochemical control in the α-C-H acetalization of furans and pyrans using alcohol nucleophiles, thus providing the ability to control the configuration at the stereogenic exocyclic acetal carbon.


Assuntos
Acetais/síntese química , Éteres Cíclicos/química , Luz , Oniocompostos/química , Fosfatos/química , Acetais/química , Furanos/química , Estrutura Molecular , Piranos/química , Estereoisomerismo
5.
ACS Cent Sci ; 3(5): 482-488, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28573211

RESUMO

Light driven excitation of gold nanoparticles (GNPs) has emerged as a potential strategy to generate hot carriers for photocatalysis through excitation of localized surface plasmon resonance (LSPR). In contrast, carrier generation through excitation of interband transitions remains a less explored and underestimated pathway for photocatalytic activity. Photoinduced oxidative etching of GNPs with FeCl3 was investigated as a model reaction in order to elucidate the effects of both types of transitions. The quantitative results show that interband transitions more efficiently generate hot carriers and that those carriers exhibit higher reactivity as compared to those generated solely by LSPR. Further, leveraging the strong π-acidic character of the resulting photogenerated Au+ hole, an interband transition induced cyclization reaction of alkynylphenols was developed. Notably, alkyne coordination to the Au+ hole intercepts the classic oxidation event and leads to the formation of the catalytically active gold clusters on subnanometer scale.

6.
Acc Chem Res ; 48(5): 1308-18, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25884306

RESUMO

Transition-metal catalyzed C-H functionalizations became a complementary and efficient bond-forming strategy over the past decade. In this respect, Cp*Rh(III) complexes have emerged as powerful catalysts for a broad spectrum of reactions giving access to synthetically versatile building blocks. Despite their high potential, the corresponding catalytic enantioselective transformations largely lag behind. The targeted transformations require all the remaining three coordination sites of the central rhodium atom of the catalyst. In consequence, the chiral information on a competent catalyst can only by stored in the cyclopentadienyl unit. The lack of suitable enabling chiral cyclopentadienyl (Cp(x)) ligands is the key hurdle preventing the development of such asymmetric versions. In this respect, an efficient set of chiral Cp(x) ligands useable with a broad variety of different transition-metals can unlock substantial application potential. This Account provides a description of our developments of two complementary classes of C2-symmetric Cp(x) derivatives. We have introduced a side- and back-wall concept to enforce chirality transfer onto the central metal atom. The first generation consists of a fused cyclohexane unit having pseudo axial methyl groups as chiral selectors and a rigidifying acetal moiety. The second ligand generation derives from an atrop-chiral biaryl-backbone and which possesses adjustable substituents at its 3,3'-positions. Both ligand families can be modulated in their respective steric bulk to adjust for the specific needs of the targeted application. The cyclopentadienes can be metalated under standard conditions. The corresponding chiral rhodium(I) ethylene complexes are relatively air and moisture and represent storable stable precatalysts for the targeted asymmetric Rh(III)-catalyzed C-H functionalizations. These complexes are then conveniently oxidized in situ by dibenzoyl peroxide to give the reactive Cp(x)Rh(III)(OBz)2 species. For instance, this catalyst is used for directed C-H activations of aryl hydroxamates and the subsequent enantioselective trapping with olefins, providing dihydroisoquinolones in very high enantioselectivities. In addition, we have established highly selective intramolecular trapping reactions with tethered higher substituted alkenes giving dihydrobenzofurans with quaternary stereogenic centers. Concerning intermolecular reactions, allene coupling partners allow for an enantioselective hydroarylation yielding substituted allylated compounds. A trapping process of the cyclometalated intermediate with diazo reactants enables the enantioselective construction of isoindolinones. Moreover, the catalysts can be used for the construction of atropchiral biaryl motives using a dehydrogenative Heck-type reaction. The development of flexibly adjustable chiral Cp(x) ligands is described in this Account showcasing their applicability for a variety of Rh(III) catalyzed C-H functionalization reactions. These Cp(x) derivatives hold promise as powerful steering ligands for further transition-metals used in asymmetric catalysis.


Assuntos
Ciclopentanos/síntese química , Compostos Organometálicos/química , Rênio/química , Catálise , Cristalografia por Raios X , Ciclopentanos/química , Ligantes , Modelos Moleculares , Estrutura Molecular
7.
Chemistry ; 20(47): 15409-18, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25283798

RESUMO

Rh(III) -catalyzed directed C-H functionalizations of arylhydroxamates have become a valuable synthetic tool. To date, the regioselectivity of the insertion of the unsaturated acceptor into the common cyclometalated intermediate was dependent solely on intrinsic substrate control. Herein, we report two different catalytic systems that allow the selective formation of regioisomeric 3-aryl dihydroisoquinolones and previously inaccessible 4-aryl dihydroisoquinolones under full catalyst control. The differences in the catalysts are computationally examined using density functional theory and transition state theory of different possible pathways to elucidate key contributing factors leading to the regioisomeric products. The stabilities of the initially formed rhodium complex styrene adducts, as well as activation barrier differences for the migratory insertion, were identified as key contributing factors for the regiodivergent pathways.

8.
Angew Chem Int Ed Engl ; 53(30): 7896-9, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24916401

RESUMO

Directed Cp*Rh(III)-catalyzed carbon-hydrogen (C-H) bond functionalizations have evolved as a powerful strategy for the construction of heterocycles. Despite their high value, the development of related asymmetric reactions is largely lagging behind due to a limited availability of robust and tunable chiral cyclopentadienyl ligands. Rhodium complexes comprising a chiral Cp ligand with an atropchiral biaryl backbone enables an asymmetric synthesis of isoindolones from arylhydroxamates and weakly alkyl donor/acceptor diazo derivatives as one-carbon component under mild conditions. The complex guides the substrates with a high double facial selectivity yielding the chiral isoindolones in good yields and excellent enantioselectivities.

9.
Angew Chem Int Ed Engl ; 53(2): 507-11, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24311026

RESUMO

Metal-catalyzed functionalizations at the ortho position of a directing group have become an efficient bond-forming strategy. A wide range of transformations that employ Cp*Rh(III) catalysts have been described, but despite their synthetic potential, enantioselective variants that use chiral versions of the Cp* ligand remain scarce (Cp*=pentamethyl cyclopentadienyl). Cyclopentadienyl compounds with an atropchiral biaryl backbone are shown to be suitable ligands for the efficient intramolecular enantioselective hydroarylation of aryl hydroxamates. Dihydrofurans that bear methyl-substituted quaternary stereocenters are thus obtained by CH functionalization under mild conditions.

10.
J Am Chem Soc ; 135(2): 636-9, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23286204

RESUMO

The lack of robust and tunable chiral versions of cyclopentadienyl (Cp) ligands hampers progress in the development of catalytic asymmetric versions of a myriad of reactions catalyzed by this ubiquitous ligand. Herein, we describe of a class of chiral Cp ligands with tunable steric parameters. Coordinated to transition metals, the ligand creates a well-defined chiral pocket, able to imprint its chirality onto the metal. The corresponding Rh complexes are shown to be excellent catalysts for enantioselective allylation of N-methoxybenzamides via directed C-H functionalizations at very mild conditions. The obtained enantioselectivities are excellent and demonstrate the viability of chiral Cp complexes as selective transition metal catalysts.

11.
Science ; 338(6106): 504-6, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23112328

RESUMO

Metal complexes coordinated by a single cyclopentadienyl (Cp) ligand are widely used, versatile catalysts, but their application to asymmetric reactions has been hindered by the difficulty of designing Cp substituents that effectively bias the coordination sphere. Here, we report on a class of simple C(2)-symmetric Cp derivatives that finely control the spatial arrangement of the transiently coordinated reactants around the central metal atom. Rhodium(III) complexes bearing these ligands proved to be highly enantioselective catalysts for directed carbon-hydrogen (C-H) bond functionalizations of hydroxamic acid derivatives.

12.
Angew Chem Int Ed Engl ; 51(42): 10610-4, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23002028

RESUMO

Director's cut: The pharmaceutically relevant sulfonamide group is shown to be a competent directing group for [Cp*Rh(OAc)(2)]-catalyzed C-H functionalizations. Reactions of the cyclometalated intermediate with internal alkynes provide access to a wide range of sultam derivatives. The reaction is high yielding and works best under aerobic conditions with catalytic amounts of CuOAc as an oxidation mediator. Cp* = C(5)Me(5).


Assuntos
Carbono/química , Compostos Heterocíclicos/química , Hidrogênio/química , Ródio/química , Sulfonamidas/química , Alcinos , Catálise , Ciclização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...