Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr Sci ; 61(5): 471-479, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35817306

RESUMO

The pharmacological activities of dictamnine and fraxinellone have been well reported; however, only a few studies have focused on the pharmacokinetics and bioavailability of concomitant delivery of these drugs in vivo. To shed light on this neglected area, we developed a rapid and sensitive UPLC-MS/MS method that quantified the levels of dictamnine and fraxinellone simultaneously in rat plasma. This method was initiated by a one-step protein precipitation strategy to purify plasma samples collected from rats treated with either oral or intravenous administration of dictamnine and fraxinellone. The mobile phase contained acetonitrile and 0.1% formic acid at a steady flow rate of 0.6 mL/min. As a result, an excellent analyte peak resolution was achieved, and the entire process took only 3 min per sample. The results were indicative of the desired linearity (r2 ≥ 0.999), precision (RSD% was within 15%), accuracy (RE% was within 15%), recoveries (≥80.66 and 68.15% for dictamnine and fraxinellone, respectively) and matrix effects (≥94.66 and 91.37% for dictamnine and fraxinellone, respectively). Additionally, the detectable limits of these two compounds were both low even when they reached 5 ng/mL. Taken together, these findings contribute to a better understanding of the pharmacokinetics and bioavailability properties of concomitant delivery of dictamnine and fraxinellone.


Assuntos
Espectrometria de Massas em Tandem , Ratos , Animais , Disponibilidade Biológica , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Administração Intravenosa , Administração Oral , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos
2.
Small ; 18(35): e2203292, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35859534

RESUMO

An effective therapeutic strategy against methicillin-resistant Staphylococcus aureus (MRSA) that does not promote further drug resistance is highly desirable. While phototherapies have demonstrated considerable promise, their application toward bacterial infections can be limited by negative off-target effects to healthy cells. Here, a smart targeted nanoformulation consisting of a liquid perfluorocarbon core stabilized by a lipid membrane coating is developed. Using vancomycin as a targeting agent, the platform is capable of specifically delivering an encapsulated photosensitizer along with oxygen to sites of MRSA infection, where high concentrations of pore-forming toxins trigger on-demand payload release. Upon subsequent near-infrared irradiation, local increases in temperature and reactive oxygen species effectively kill the bacteria. Additionally, the secreted toxins that are captured by the nanoformulation can be processed by resident immune cells to promote multiantigenic immunity that protects against secondary MRSA infections. Overall, the reported approach for the on-demand release of phototherapeutic agents into sites of infection could be applied against a wide range of high-priority pathogens.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Lipossomos/farmacologia , Testes de Sensibilidade Microbiana , Fototerapia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...