Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1101766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077639

RESUMO

Oiltea-camellia (C. oleifera) is a widely cultivated woody oil crop in Southern China and Southeast Asia. The genome of oiltea-camellia was very complex and not well explored. Recently, genomes of three oiltea-camellia species were sequenced and assembled, multi-omic studies of oiltea-camellia were carried out and provided a better understanding of this important woody oil crop. In this review, we summarized the recent assembly of the reference genomes of oiltea-camellia, genes related to economic traits (flowering, photosynthesis, yield and oil component), disease resistance (anthracnose) and environmental stress tolerances (drought, cold, heat and nutrient deficiency). We also discussed future directions of integrating multiple omics for evaluating genetic resources and mining key genes of important traits, and the application of new molecular breeding and gene editing technologies to accelerate the breeding process of oiltea-camellia.

2.
Plants (Basel) ; 12(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36987076

RESUMO

Rice blast caused by pathogenic fungus Magnaporthe oryzae is one of the most serious diseases in rice. The pyramiding of effective resistance genes into rice varieties is a potential approach to reduce the damage of blast disease. In this study, combinations of three resistance genes, Pigm, Pi48 and Pi49, were introduced into a thermo-sensitive genic male sterile (PTGMS) line Chuang5S through marker-assisted selection. The results showed that the blast resistance of improved lines increased significantly compared with Chuang5S, and the three gene pyramiding lines (Pigm + Pi48 + Pi49) had higher rice blast resistance level than monogenic line and digenic lines (Pigm +Pi48, Pigm + Pi49). The genetic backgrounds of the improved lines were highly similar (>90%) to the recurrent parent Chuang5S by using the RICE10K SNP chip. In addition, agronomic traits evaluation also showed pyramiding lines with two or three genes similar to Chuang5S. The yields of the hybrids developed from improved PTGMS lines and Chuang5S are not significantly different. The newly developed PTGMS lines can be practically used for the breeding of parental lines and hybrid varieties with broad spectrum blast resistance.

3.
Front Plant Sci ; 13: 881244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668808

RESUMO

The two-line rice hybrid "Super 1000" (GX24S × R900) represents a major landmark achievement of breeding for super-hybrid rice in China. However, both male parent R900 and hybrid "Super 1000" have an obvious defect of high susceptibility to rice bacterial blight (BB) and blast. Thus, improving disease resistance and maintaining the original high-yield capacity are essential for the sustainable application of "Super 1000." In this study, the application of closely linked single-nucleotide polymorphism (SNP) markers for foreground selection of dominant resistance gene loci together with genome-wide SNP markers for the background selection rapidly improved the disease resistance of R900 without disturbing its high-yield capacity. A series of improved R900 lines (iR900, in BC2Fn and BC3Fn generations) were developed to stack resistance genes (Xa23+Pi9, Xa23+Pi1+Pi2/9) by marker-assisted backcrossing and field selection for phenotypes, and further crossed with the female line GX24S to obtain improved hybrid variety Super 1000 (iS1000). The genetic backgrounds of iS1000 and "Super 1000" were profiled by using a 56 K SNP-Chip, and results showed that they shared 98.76% of similarity. Meanwhile, evaluation of the field disease resistance showed that the iR900 lines and iS1000 hybrids possess significantly enhanced resistance to both BB and rice blast. Resistance spectrum assays revealed that the iR900 lines and their derived hybrids exhibited high-level resistance to 28 Xoo strains tested, and enhanced resistance to leaf blast at the seedling stage when infected with 38 Magnaporthe oryzae isolates. Between 2019 and 2020, the multi-location field trials across the middle and lower reaches of the Yangtze River were launched and showed that the iS1000 slightly out-yielded than the original variety. In a large-scale demonstration site (6.73 ha, Yunnan, China), the iS1000 achieved 17.06 t/hm2 of yield in 2019. Moreover, the high similarity was observed in main agronomic traits and grain quality when comparing the improved lines/hybrids to original ones (iR900 vs. R900, iS1000 vs. S1000). This work presented a typical genomics-assisted breeding strategy and practice, which involves in directional introgression and rapid stack of multiple disease resistance genes, endowing the super-high-yield hybrid rice variety with holistic disease resistance but without yield penalty.

4.
Theor Appl Genet ; 135(4): 1345-1354, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35312798

RESUMO

KEY MESSAGE: This study demonstrated that pyramiding of early morning flowering and heat tolerance QTLs (qEMF3 and qHTSF4.1) in rice is an efficient approach to maintain high spikelet fertility under high-temperature stress at flowering stage. High temperature at flowering stage of rice causes low spikelet fertility and low yield. To cope with high-temperature stress brought by climate change, two strategies were proposed to develop heat-resilient rice varieties. One is to escape the high temperature by flowering early in the morning, another is to enhance tolerance to high-temperature stress per se. Two promising QTLs for early morning flowering (qEMF3) and heat tolerance (qHTSF4.1) were introgressed into IR64 background, and Near isogenic lines (NILs) IR64 + qEMF3 (IR64EMF3) and IR64 + qHTSF4.1 (IR64HT4) were developed in previous studies. In this study, a QTL pyramiding line IR64 + qHTSF4.1 + qEMF3 (IR64HT4EMF3) was developed by marker-assisted selection of the progenies of previous NILs. The NILs were subjected to different high-temperature regimes in the indoor growth chambers and different locations in the field. In the indoor growth chambers, when high temperature starts early (before 11:00 am), IR64HT4 and IR64HT4EMF3 had higher spikelet fertility than IR64EMF3; when high temperature comes later (after 11:00 am), IR64EMF3 and IR64HT4EMF3 had higher spikelet fertility than IR64HT4. The flowering pattern of the IR64HT4EMF3 was earlier than IR64HT4, but similar to IR64EMF3 in the glasshouse, field and indoor growth chambers. IR64HT4EMF3 showed higher spikelet fertility than IR64EMF3 and IR64HT4 in the field in the Philippines. Thus, combination of early morning flowering and heat tolerance QTLs is an elegant breeding strategy to cope with future extreme climate.


Assuntos
Oryza , Termotolerância , Temperatura Alta , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Termotolerância/genética
5.
Mol Breed ; 42(4): 16, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37309463

RESUMO

Genomic selection is an efficient tool for breeding selection, especially for quantitative traits controlled by multiples genes with low heritability. To validate the application of genomic selection in hybrid rice breeding, the yield and grain quality traits of 404 hybrid rice breeding lines were investigated, and the same accessions were genotyped by using a 56 K SNP chip. There were wide variances among the tested accessions for all the measured traits, and most of the traits were correlated. A total of 67 significant loci were identified for the yield-related traits, and 123 significant loci were identified for the grain quality traits by GWAS. Two of these loci associated with increasing grain yield but decreasing grain quality. The GEBVs of all the yield and grain quality traits were calculated by using 15 different prediction algorithms. The plant height, panicle length, thousand grain weight, grain length and width ratio, amylose content, and alkali value have higher predictability than other traits. However, the predictive accuracy of different GS models is different for different traits. This study provided useful information for genomic selection of specific trait using proper markers and prediction models. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01289-6.

6.
Genomics ; 113(5): 3083-3091, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34237377

RESUMO

Revealing genomic variation of representative and diverse germplasm is the cornerstone of deploying genomics information into genetic improvement programs of species of agricultural importance. Here we report the re-sequencing of 239 japonica rice elites representing the genetic diversity of japonica germplasm in China, Japan and Korea. A total of 4.8 million SNPs and PAV of 35,634 genes were identified. The elites from Japan and Korea are closely related and relatively less diverse than those from China. A japonica rice pan-genome was constructed, and 35 Mb non-redundant novel sequences were identified, from which 1131 novel genes were predicted. Strong selection signals of genomic regions were detected on most of the chromosomes. The heading date genes Hd1 and Hd3a have been artificially selected during the breeding process. The results from this study lay the foundation for future whole genome sequences-enabled breeding in rice and provide a paradigm for other species.


Assuntos
Oryza , Alelos , Variação Genética , Genoma de Planta , Oryza/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 37(5): 910-917, 2020 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-33140617

RESUMO

The monitoring of pregnant women is very important. It plays an important role in reducing fetal mortality, ensuring the safety of perinatal mother and fetus, preventing premature delivery and pregnancy accidents. At present, regular examination is the mainstream method for pregnant women's monitoring, but the means of examination out of hospital is scarce, and the equipment of hospital monitoring is expensive and the operation is complex. Using intelligent information technology (such as machine learning algorithm) can analyze the physiological signals of pregnant women, so as to realize the early detection and accident warning for mother and fetus, and achieve the purpose of high-quality monitoring out of hospital. However, at present, there are not enough public research reports related to the intelligent processing methods of out-of-hospital monitoring for pregnant women, so this paper takes the out-of-hospital monitoring for pregnant women as the research background, summarizes the public research reports of intelligent processing methods, analyzes the advantages and disadvantages of the existing research methods, points out the possible problems, and expounds the future development trend, which could provide reference for future related researches.


Assuntos
Feto , Gestantes , Feminino , Humanos , Gravidez
8.
Front Plant Sci ; 9: 1578, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443261

RESUMO

Productivity of rice, world's most important cereal is threatened by high temperature stress, intensified by climate change. Development of heat stress-tolerant varieties is one of the best strategies to maintain its productivity. However, heat stress tolerance is a multigenic trait and the candidate genes are poorly known. Therefore, we aimed to identify quantitative trait loci (QTL) for vegetative stage tolerance to heat stress in rice and the corresponding candidate genes. We used genotyping-by-sequencing to generate single nucleotide polymorphic (SNP) markers and genotype 150 F8 recombinant inbred lines (RILs) obtained by crossing heat tolerant "N22" and heat susceptible "IR64" varieties. A linkage map was constructed using 4,074 high quality SNP markers that corresponded to 1,638 recombinationally unique events in this mapping population. Six QTL for root length and two for shoot length under control conditions with 2.1-12% effect were identified. One QTL rlht5.1 was identified for "root length under heat stress," with 20.4% effect. Four QTL were identified for "root length under heat stress as percent of control" that explained the total phenotypic variation from 5.2 to 8.6%. Three QTL with 5.3-10.2% effect were identified for "shoot length under heat stress," and seven QTL with 6.6-19% effect were identified for "shoot length under heat stress expressed as percentage of control." Among the QTL identified six were overlapping between those identified using shoot traits and root traits: two were overlapping between QTL identified for "shoot length under heat stress" and "root length expressed as percentage of control" and two QTL for "shoot length as percentage of control" were overlapping a QTL each for "root length as percentage of control" and "shoot length under heat stress." Genes coding 1,037 potential transcripts were identified based on their location in 10 QTL regions for vegetative stage heat stress tolerance. Among these, 213 transcript annotations were reported to be connected to stress tolerance in previous research in the literature. These putative candidate genes included transcription factors, chaperone proteins (e.g., alpha-crystallin family heat shock protein 20 and DNAJ homolog heat shock protein), proteases, protein kinases, phospholipases, and proteins related to disease resistance and defense and several novel proteins currently annotated as expressed and hypothetical proteins.

9.
BMC Genet ; 19(1): 2, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298667

RESUMO

BACKGROUND: Salinity has a significant impact on rice production in coastal, arid and semi-arid areas in many countries, including countries growing temperate rice, such as Kazakhstan. Recently, the complete genomes of 3000 rice accessions were sequenced through the 3 K rice genome project, and this set included 203 temperate japonica rice accessions. To identify salinity-tolerant germplasm and related genes for developing new salinity-tolerant breeding lines for the temperate japonica rice growing regions, we evaluated the seedling stage salinity tolerance of these sequenced temperate japonica rice accessions, and conducted genome-wide association studies (GWAS) for a series of salinity tolerance related traits. RESULTS: There were 27 accessions performed well (SES < 5.0) under moderate salinity stress (EC12), and 5 accessions were tolerant under both EC12 and EC18. A total of 26 QTLs were identified for 9 measured traits. Eleven of these QTLs were co-located with known salinity tolerance genes. QTL/gene clusters were observed on chromosome 1, 2, 3, 6, 8 and 9. Six candidate genes were identified for five promising QTLs. The alleles of major QTL Saltol and gene O S HKT1;5 (SKC1) for Na+/K+ ratio identified in indica rice accessions were different from those in the temperate japonica rice accessions used in this study. CONCLUSION: Salinity tolerant temperate japonica rice accessions were identified in this study, these accessions are important resources for breeding programs. SNPs located in the promising QTLs and candidate genes could be used for future gene validation and marker assisted selection. This study provided useful information for future studies on genetics and breeding of salinity tolerance in temperate japonica rice.


Assuntos
Estudo de Associação Genômica Ampla , Oryza/genética , Tolerância ao Sal , Oryza/classificação , Oryza/fisiologia , Polimorfismo de Nucleotídeo Único , Potássio/análise , Locos de Características Quantitativas , Plântula/genética , Plântula/fisiologia , Sódio/análise
10.
J Exp Bot ; 68(18): 5233-5245, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29106621

RESUMO

Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were exposed to control (31 °C/23 °C, day/night), high night-time temperature (HNT; 31 °C/30 °C), high day-time temperature (HDT; 38 °C/23 °C) and high day- and night-time temperature (HNDT; 38 °C/30 °C) treatments for 20 consecutive days during the grain-filling stage. Grain-filling dynamics, starch metabolism enzymes, temporal starch accumulation patterns and the process of chalk formation were quantified. Compensation between the rate and duration of grain filling minimized the impact of HNT, but irreversible impacts on seed-set, grain filling and ultimately grain weight were recorded with HDT and HNDT. Scanning electron microscopy demonstrated irregular and smaller starch granule formation affecting amyloplast build-up with HDT and HNDT, while a quicker but normal amylopast build-up was recorded with HNT. Our findings revealed temporal variation in the starch metabolism enzymes in all three stress treatments. Changes in the enzymatic activity did not derail starch accumulation under HNT when assimilates were sufficiently available, while both sucrose supply and the conversion of sucrose into starch were affected by HDT and HNDT. The findings indicate differential mechanisms leading to high day and high night temperature stress-induced loss in yield and quality. Additional genetic improvement is needed to sustain rice productivity and quality under future climates.


Assuntos
Oryza/crescimento & desenvolvimento , Amido/metabolismo , Biomassa , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/fisiologia , Genótipo , Temperatura Alta , Oryza/genética , Oryza/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Temperatura
11.
Rev Sci Instrum ; 88(9): 094301, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964198

RESUMO

Sudden cardiac death (SCD) is one of the most prominent causes of death among patients with cardiac diseases. Since ventricular arrhythmia is the main cause of SCD and it can be predicted by T wave alternans (TWA), the detection of TWA in the body-surface electrocardiograph (ECG) plays an important role in the prevention of SCD. But due to the multi-source nature of TWA, the nonlinear propagation through thorax, and the effects of the strong noises, the information from different channels is uncertain and competitive with each other. As a result, the single-channel decision is one-sided while the multichannel decision is difficult to reach a consensus on. In this paper, a novel multichannel decision-level fusion method based on the Dezert-Smarandache Theory is proposed to address this issue. Due to the redistribution mechanism for highly competitive information, higher detection accuracy and robustness are achieved. It also shows promise to low-cost instruments and portable applications by reducing demands for the synchronous sampling. Experiments on the real records from the Physikalisch-Technische Bundesanstalt diagnostic ECG database indicate that the performance of the proposed method improves by 12%-20% compared with the one-dimensional decision method based on the periodic component analysis.

12.
J Biomater Sci Polym Ed ; 28(17): 2066-2081, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28854848

RESUMO

Surface modification by immobilizing biomolecules has been widely proved to enhance biocompatibility of cardiovascular implanted devices. Here, we aimed at developing a multifunctional surface that not only provides good hemocompatibility but also functions well in capturing circulating endothelial progenitor cells (EPCs) in the blood flow to improve the surface endothelialization. In the present work, we preferred to chemically co-immobilize (Michael addition and Schiff base reaction) the anti-CD133 (EPC-specific antibody) and fucoidan (EPC-mobilization factor, which also contribute to better hemocompatibility) onto a polydopamine (PDA) film which is famous for its stability and endothelial cell (EC) compatibility. The quantality of anti-CD133 and other surface characterization (X-ray photoemission spectroscopy, atomic force microscopy and water contact angle measurement) demonstrated successful preparation of the CD133/fucoidan coating. The platelets adhesion/activation test suggested improved hemocompatibility of this bio-coating. The ex vivo experiment on New Zealand white rabbits showed that the anti-CD133/fucoidan coating had good ability on capture the circulating EPC. In addition, the quartz crystal microbalance-D indicated that the EPC behaviors, including adhesion, spreading and extracellular matrix re-molding, were related to the density of anti-CD133 in the coating. We hope this anti-CD133/fucoidan multi-functional coating may provide potential application on surface modification of cardiovascular biomaterials.


Assuntos
Antígeno AC133/imunologia , Anticorpos Monoclonais/imunologia , Células Progenitoras Endoteliais , Polissacarídeos/química , Animais , Anticorpos Monoclonais/química , Materiais Revestidos Biocompatíveis/química , Células Progenitoras Endoteliais/imunologia , Humanos , Teste de Materiais , Coelhos , Propriedades de Superfície
13.
Mater Sci Eng C Mater Biol Appl ; 64: 236-242, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27127049

RESUMO

Surface biofunctional modification of cardiovascular stents is a versatile approach to reduce the adverse effects after implantation. In this work, a novel multifunctional coating was fabricated by coimmobilization of the sulfated polysaccharide of brown algae fucoidan and laminin to biomimic the vascular intimal conditions in order to support rapid endothelialization, prevent restenosis and improve hemocompatibility. The surface properties of the coating such as hydrophilicity, bonding density of biomolecules and stability were evaluated and optimized. According to the biocompatibility tests, the fucoidan/laminin multilayer coated surface displayed less platelet adhesion with favorable anticoagulant property. In addition, the fucoidan/laminin complex showed function to selectively regulate vascular cells growth behavior. The proliferation of endothelial cells (ECs) on the fucoidan/laminin biofunctional coating was significantly promoted. For the smooth muscle cells (SMCs), inhibitory effects on cell adhesion and proliferation were observed. In conclusion, the fucoidan/laminin biofunctional coating was successfully fabricated with desirable anticoagulant and endothelialization properties which show a promising application in the vascular devices such as vascular stents or grafts surface modification.


Assuntos
Proliferação de Células , Materiais Revestidos Biocompatíveis/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Laminina/química , Polissacarídeos/química , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo
14.
Theor Appl Genet ; 128(8): 1507-17, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957114

RESUMO

KEY MESSAGE: This study fine mapped and validated a QTL on rice chromosome 4 that increases spikelet fertility under high temperature (over 37 °C) at the flowering stage. Climate change has a negative effect on crop production and food security. Understanding the genetic mechanism of heat tolerance and developing heat-tolerant varieties is essential to cope with future global warming. Previously, we reported on a QTL (qHTSF4.1) from an IR64/N22 population responsible for rice spikelet fertility under high-temperature stress at the flowering stage. To further fine map and validate the effect of qHTSF4.1, PCR-based SNP markers were developed and used to genotype BC2F2, BC3F2, BC3F3, and BC5F2 populations from the same cross. The interval of the QTL was narrowed down to about 1.2 Mb; however, further recombination was not identified even with a large BC5F2 population that was subsequently developed and screened. The sequence in the QTL region is highly conserved and a large number of genes in the same gene family were observed to be clustered in the region. The QTL qHTSF4.1 consistently increased spikelet fertility in all of the backcross populations. This was confirmed using 24 rice varieties. Most of the rice varieties with the QTL showed a certain degree of heat tolerance under high-temperature conditions. In a BC5F2 population with clean background of IR64, QTL qHTSF4.1 increased spikelet fertility by about 15%. It could be an important source for enhancing heat tolerance in rice at the flowering stage. PCR-based SNP markers developed in this study can be used for QTL introgression and for pyramiding with other agronomically important QTLs/genes through marker-assisted selection.


Assuntos
Flores/fisiologia , Temperatura Alta , Oryza/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cruzamentos Genéticos , Fertilidade/genética , Genótipo , Oryza/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo Único
15.
BMC Genet ; 16: 41, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25895682

RESUMO

BACKGROUND: Climate change is affecting rice production in many countries. Developing new rice varieties with heat tolerance is an essential way to sustain rice production in future global warming. We have previously reported four quantitative trait loci (QTLs) responsible for rice spikelet fertility under high temperature at flowering stage from an IR64/N22 population. To further explore additional QTL from other varieties, two bi-parental F2 populations and one three-way F2 population derived from heat tolerant variety Giza178 were used for indentifying and confirming QTLs for heat tolerance at flowering stage. RESULTS: Four QTLs (qHTSF1.2, qHTSF2.1, qHTSF3.1 and qHTSF4.1) were identified in the IR64/Giza178 population, and two other QTLs (qHTSF6.1 and qHTSF11.2) were identified in the Milyang23/Giza178 population. To confirm the identified QTLs, another three-way-cross population derived from IR64//Milyang23/Giza178 was genotyped using 6K SNP chips. Five QTLs were identified in the three-way-cross population, and three of those QTLs (qHTSF1.2, qHTSF4.1 and qHTSF6.1) were overlapped with the QTLs identified in the bi-parental populations. The tolerance alleles of these QTLs were from the tolerant parent Giza178 except for qHTSF3.1. The QTL on chromosome 4 (qHTSF4.1) is the same QTL previously identified in the IR64/N22 population. CONCLUSION: The results from different populations suggest that heat tolerance in rice at flowering stage is controlled by several QTLs with small effects and stronger heat tolerance could be attained through pyramiding validated heat tolerance QTLs. QTL qHTSF4.1 was consistently detected across different genetic backgrounds and could be an important source for enhancing heat tolerance in rice at flowering stage. Polymorphic SNP markers in these QTL regions can be used for future fine mapping and developing SNP chips for marker-assisted breeding.


Assuntos
Adaptação Biológica/genética , Flores , Temperatura Alta , Oryza/genética , Oryza/metabolismo , Locos de Características Quantitativas , Mapeamento Cromossômico , Estudos de Associação Genética , Genótipo , Hibridização Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
16.
Breed Sci ; 64(2): 164-75, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24987303

RESUMO

Influences of allelic variations in starch synthesis-related genes (SSRGs) on rice grain quality were examined. A total of 187 nonglutinous Korean rice varieties, consisting of 170 Japonica and 17 Tongil-type varieties, were grown in the field and in two greenhouse conditions. The percentages of head rice and chalky grains, amylose content, alkali digestion value, and rapid visco-analysis characteristics were evaluated in the three different environments. Among the 10 previously reported SSRG markers used in this study, seven were polymorphic, and four of those showed subspecies-specific allele distributions. Six out of the seven polymorphic SSRG markers were significantly associated with at least one grain quality trait (R (2) > 0.1) across the three different environments. However, the association level and significance were markedly lower when the analysis was repeated using only the 170 Japonica varieties. Similarly, the significant associations between SSRG allelic variations and changes in grain quality traits under increased temperature were largely attributable to the biased allele frequency between the two subpopulations. Our results suggest that within Korean Japonica varieties, these 10 major SSRG loci have been highly fixed during breeding history and variations in grain quality traits might be influenced by other genetic factors.

17.
Funct Plant Biol ; 39(2): 116-125, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32480766

RESUMO

As the available water supply for urban turfgrass management is becoming limited in Australia, it will be crucial to identify drought-resistant turfgrass species and water-saving management strategies. Eight (pre-)commercial turfgrasses grown in Australia, two each of four species including the bermudagrasses (Cynodon dactylon L.), the Queensland blue couches (Digitaria didactyla Willd), the seashore paspalums (Paspalum vaginatum Swartz.) and St Augustinegrasses (Stenotaphrum secundatum (Walt.) Kuntze) were evaluated in two lysimeter experiments. Shallow lysimeters (28 and 40cm) were used to represent shallow soil profiles typical of urban environments. We measured gravimetric water use for the eight cultivars and calculated water use efficiency (WUE, clipping yield to water use ratio) and WUEr (ratio of WUE under drought to that under irrigated conditions). WUEr measured in both experiments correlated strongly with survival period and this relationship was not affected by soil type or cutting height. Using survival period as the criterion for drought resistance, the best were the bermudagrasses and the worst were the seashore paspalums and Queensland blue couches. The bermudagrass genotypes had the lowest water use, highest WUE and WUEr and the Queensland blue couches and seashore paspalums had the greatest water use, lowest WUE and WUEr. The possible mechanisms of drought resistance included lower water use and lower stomatal conductance as indicated by higher canopy temperature in the early stage of water deficit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...