Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(8): 3134-3138, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29425034

RESUMO

Investigations of the Ag (I)-substituted Keggin K3[H3AgIPW11O39] as a bifunctional Lewis acidic and basic catalyst are reported that explore the stabilization of Li2Sn moieties so that reversible redox reactions in S-based electrodes would be possible. Spectroscopic investigations showed that the Li2Sn-moieties can be strongly adsorbed on the {AgIPW11O39} cluster, where the Ag(I) ion can act as a Lewis acid site to further enhance the adsorption of the S-moieties, and these interactions were investigated and rationalized using DFT. These results were used to construct an electrode for use in a Li-S battery with a very high S utilization of 94%, and a coulometric capacity of 1580 mAh g-1. This means, as a result of using the AgPOM, both a high active S content, as well as a high areal S mass loading, is achieved in the composite electrode giving a highly stable battery with cycling performance at high rates (1050 and 810 mAh g-1 at 1C and 2C over 100 to 300 cycles, respectively).

2.
ACS Nano ; 11(6): 6031-6039, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28570815

RESUMO

High utilization and loading of sulfur in cathodes holds the key in the realization of Li-S batteries. We here synthesized a Co4N mesoporous sphere, which was made up of nanosheets, via an easy and convenient method. This material presents high affinity, speedy trapping, and absorbing capacity for polysulfides and acts as a bifunctional catalysis for sulfur redox processes; therefore it is an ideal matrix for S active material. With such a mesoporous sphere used as a sulfur host in Li-S batteries, extraordinary electrochemistry performance has been achieved. With a sulfur content of 72.3 wt % in the composite, the Co4N@S delivered a high specific discharge capacity of 1659 mAh g-1 at 0.1 C, almost reaching its theoretic capacity. Also, the battery exhibited a large reversible capacity of about 1100 mAh g-1 at 0.5 C and 1000 mAh g-1 at 1 C after 100 cycles. At a high rate of 2 C and 5 C, after 300 cycles, the discharge capacity finally stabilized at 805 and 585 mAh g-1. Even at a 94.88% sulfur content, the cathode can still deliver an extremely high specific discharge capacity of 1259 mAh g-1 with good cycle performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...