Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1394204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873138

RESUMO

Motivation: High-throughput sequencing technology facilitates the quantitative analysis of microbial communities, improving the capacity to investigate the associations between the human microbiome and diseases. Our primary motivating application is to explore the association between gut microbes and obesity. The complex characteristics of microbiome data, including high dimensionality, zero inflation, and over-dispersion, pose new statistical challenges for downstream analysis. Results: We propose a GLM-based zero-inflated generalized Poisson factor analysis (GZIGPFA) model to analyze microbiome data with complex characteristics. The GZIGPFA model is based on a zero-inflated generalized Poisson (ZIGP) distribution for modeling microbiome count data. A link function between the generalized Poisson rate and the probability of excess zeros is established within the generalized linear model (GLM) framework. The latent parameters of the GZIGPFA model constitute a low-rank matrix comprising a low-dimensional score matrix and a loading matrix. An alternating maximum likelihood algorithm is employed to estimate the unknown parameters, and cross-validation is utilized to determine the rank of the model in this study. The proposed GZIGPFA model demonstrates superior performance and advantages through comprehensive simulation studies and real data applications.

2.
Biom J ; 66(3): e2200342, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616336

RESUMO

The research on the quantitative trait locus (QTL) mapping of count data has aroused the wide attention of researchers. There are frequent problems in applied research that limit the application of the conventional Poisson model in the analysis of count phenotypes, which include the overdispersion and excess zeros and ones. In this article, a novel model, that is, the zero-and-one-inflated generalized Poisson (ZOIGP) model, is proposed to deal with these problems. Based on the proposed model, a score test is performed for the inflation parameter, in which the ZOIGP model with a constant proportion of excess zeros and ones is compared with a standard generalized Poisson model. To illustrate the practicability of the ZOIGP model, we extend it to the QTL interval mapping application that underpins count phenotype with excess zeros and excess ones. The genetic effects are estimated utilizing the expectation-maximization algorithm embedded with the Newton-Raphson algorithm, and the genome-wide scan and likelihood ratio test is performed to map and test the potential QTLs. The statistical properties exhibited by the proposed method are investigated through simulation. Finally, a real data analysis example is used to illustrate the utility of the proposed method for QTL mapping.


Assuntos
Algoritmos , Locos de Características Quantitativas , Simulação por Computador , Análise de Dados , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA