Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364699

RESUMO

The surfactant modification of catalyst morphology is considered as an effective method to improve photocatalytic performance. In this work, the visible-light-driven composite photocatalyst was obtained by growing CdS nanoparticles in the cubic crystal structure of CdCO3, which, after surfactant modification, led to the formation of CdCO3 elliptical spheres. This reasonable composite-structure-modification design effectively increased the specific surface area, fully exposing the catalytic-activity check point. Cd2+ from CdCO3 can enter the CdS crystal structure to generate lattice distortion and form hole traps, which productively promoted the separation and transfer of CdS photogenerated electron-hole pairs. The prepared 5-CdS/CdCO3@SDS exhibited excellent Cr(VI) photocatalytic activity with a reduction efficiency of 86.9% within 30 min, and the reduction rate was 0.0675 min-1, which was 15.57 and 14.46 times that of CdS and CdCO3, respectively. Finally, the main active substances during the reduction process, the photogenerated charge transfer pathways related to heterojunctions and the catalytic mechanism were proposed and analyzed.

2.
Acta Pharmaceutica Sinica ; (12): 499-2016.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-779197

RESUMO

NADPH oxidases (NOXs) are the key enzymes of redox signaling in vivo and also the main source of reactive oxygen species (ROS) in the body. ROS plays a role of double-edged sword. On the one hand, ROS, at the level of physiological amount, has the effect of immune defense and also acts as a second messenger involved in the regulation of cellular signaling pathways. On the other hand, excessive ROS can cause oxidative stress, leading to the disorder of cellular functions. Recently, studies showed that ROS plays an important role in acceleration of some pathological reactions such as inflammation, fibrosis and tumor formation. As a major source of ROS, NOX has become a popular target in treating oxidative stress, inflammation, fibrosis and tumor. Herein, the role of NOX in these pathological processes and the research progress of NOX inhibitors are reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...