Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 207: 110871, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211740

RESUMO

CONTEXT: Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, has been shown to exhibit anti-depressive effects in clinical trials. However, the direct mechanism underlying its effect on neuroinflammation remains unclear. Neuroinflammatory reaction from astrocytes leads to depression, and our previous study found that gap junction disorder between astrocytes aggravated neuroinflammatory reaction in depressed mice. OBJECTIVE: To investigate the potential mechanism of celecoxib's effects on astrocytic gap junctions during the central nervous inflammation-induced depression. MATERIALS & METHODS: Stereotaxic injection of lipopolysaccharide (LPS) into the prefrontal cortex (PFC) to establish a model of major depressive disorder (MDD). Celecoxib was administrated into PFC 15 min after LPS injection. The depressive performance was tested by tail suspension test and forced swimming test, and the levels of proinflammation cytokines were determined at mRNA and protein levels. Resting-state functional connection (rsFC) was employed to assess changes in the default mode network (DMN). Additionally, astrocytic gap junctions were also determined by lucifer yellow (LY) diffusion and transmission electron microscope (TEM), and the expression of connexin 43 (Cx43) was measured by western blotting, quantitative polymerase chain reaction, and immunofluorescence. RESULTS: LPS injection induced significant depressive performance, which was ameliorated by celecoxib treatment. Celecoxib also improved rsFC in the DMN. Furthermore, celecoxib improved astrocytic gap junctions as evidenced by increased LY diffusion, shortened gap junction width, and normalized levels of phosphorylated Cx43. Celecoxib also blocked the phosphorylation of p65, and inhibition of p65 abolished the improvement of Cx43. DISCUSSION & CONCLUSION: Anti-depressive effects of celecoxib are mediated, at least in part, by the inhibition of nuclear factor- kappa B (NF-κB) and the subsequent improvement of astrocytic gap junction function.


Assuntos
Transtorno Depressivo Maior , NF-kappa B , Animais , Camundongos , Celecoxib/farmacologia , NF-kappa B/metabolismo , Conexina 43/metabolismo , Astrócitos/metabolismo , Transtorno Depressivo Maior/metabolismo , Lipopolissacarídeos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Junções Comunicantes
2.
Cell Death Dis ; 14(9): 594, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673867

RESUMO

Parkinson's disease (PD) is pathologically manifested by the aggregation of α-synuclein, which has been envisioned as a promising disease-modifying target for PD. Here, we identified 20C, a bibenzyl compound derived from Gastrodia elata, able to inhibit the aggregation of A53T variants of α-synuclein directly in vitro. Computational analysis revealed that 20C binds to cavities in mature α-synuclein fibrils, and it indeed displays a strong interaction with α-synuclein and reduced their ß-sheet structure by microscale thermophoresis and circular dichroism, respectively. Moreover, incubating neural cells with 20C reduced the amounts of α-synuclein inclusions significantly. The treatment of A53T α-Syn transgenic mice with 20C significantly reduces the toxic α-synuclein levels, improves behavioral performance, rescues dopaminergic neuron, and enhances functional connections between SNc and PD associated brain areas. The transcriptome analysis of SNc demonstrated that 20C improves mitochondrial dynamics, which protects mitochondrial morphology and function against α-synuclein induced degeneration. Overall, 20C appears to be a promising candidate for the treatment of PD.


Assuntos
Gastrodia , Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/genética , Doença de Parkinson/tratamento farmacológico , Encéfalo , Neurônios Dopaminérgicos , Camundongos Transgênicos
3.
J Neuroinflammation ; 20(1): 97, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098609

RESUMO

Ischemic stroke is characterized by the presence of reactive microglia. However, its precise involvement in stroke etiology is still unknown. We used metabolic profiling and showed that chemokine like factor 1 (CKLF1) causes acute microglial inflammation and metabolic reprogramming from oxidative phosphorylation to glycolysis, which was reliant on the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-hypoxia inducible factor 1α (HIF-1α) signaling pathway. Once activated, microglia enter a chronic tolerant state as a result of widespread energy metabolism abnormalities, which reduces immunological responses, including cytokine release and phagocytosis. Metabolically dysfunctional microglia were also found in mice using genome-wide RNA sequencing after chronic administration of CKLF1, and there was a decrease in the inflammatory response. Finally, we showed that the loss of CKLF1 reversed the defective immune response of microglia, as indicated by the maintenance its phagocytosis to neutrophils, thereby mitigating the long-term outcomes of ischemic stroke. Overall, CKLF1 plays a crucial role in the relationship between microglial metabolic status and immune function in stroke, which prepares a potential therapeutic strategy for ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Citocinas/metabolismo , Tolerância Imunológica , AVC Isquêmico/metabolismo , Mamíferos/metabolismo , Microglia/metabolismo , Acidente Vascular Cerebral/metabolismo
4.
Acta Pharmacol Sin ; 43(1): 1-9, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33772140

RESUMO

Recent evidence shows that when ischemic stroke (IS) occurs, the BBB would be destructed, thereby promoting the immune cells to migrate into the brain, suggesting that the immune responses can play a vital role in the pathology of IS. As an essential subpopulation of immunosuppressive T cells, regulatory T (Treg) cells are involved in maintaining immune homeostasis and suppressing immune responses in the pathophysiological conditions of IS. During the past decades, the regulatory role of Treg cells has attracted the interest of numerous researchers. However, whether they are beneficial or detrimental to the outcomes of IS remains controversial. Moreover, Treg cells exert distinctive effects in the different stages of IS. Therefore, it is urgent to elucidate how Treg cells modulate the immune responses induced by IS. In this review, we describe how Treg cells fluctuate and play a role in the regulation of immune responses after IS in both experimental animals and humans, and summarize their biological functions and mechanisms in both CNS and periphery. We also discuss how Treg cells participate in poststroke inflammation and immunodepression and the potential of Treg cells as a novel therapeutic approach.


Assuntos
Isquemia Encefálica/imunologia , Acidente Vascular Cerebral/imunologia , Linfócitos T Reguladores/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...