Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134531, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38728863

RESUMO

Cadmium (Cd), one of the most severe environmental pollutants in soil, poses a great threat to food safety and human health. Understanding the potential sources, fate, and translocation of Cd in soil-plant systems can provide valuable information on Cd contamination and its environmental impacts. Stable Cd isotopic ratios (δ114/110Cd) can provide "fingerprint" information on the sources and fate of Cd in the soil environment. Here, we review the application of Cd isotopes in soil, including (i) the Cd isotopic signature of soil and anthropogenic sources, (ii) the interactions of Cd with soil constituents and associated Cd isotopic fractionation, and (iii) the translocation of Cd at soil-plant interfaces and inside plant bodies, which aims to provide an in-depth understanding of Cd transport and migration in soil and soil-plant systems. This review would help to improve the understanding and application of Cd isotopic techniques for tracing the potential sources and (bio-)geochemical cycling of Cd in soil environment.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Poluentes do Solo/análise , Poluentes do Solo/química , Solo/química , Isótopos , Plantas/metabolismo , Plantas/química , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 888: 164276, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37209735

RESUMO

Molecular fractionation of dissolved organic matter (DOM) at the mineral-liquid interfaces in soil changes its molecular composition, thus altering its reactivity, such as proton and metal binding properties. Therefore, a quantitative understanding of compositional change of DOM molecules after adsorptive fractionation by minerals is of great environmental significance for predicting the cycling of organic carbon (C) and metals in the ecosystem. In this study, we conducted adsorption experiments to investigate the adsorption behaviors of DOM molecules on ferrihydrite. The molecular compositions of the original and fractionated DOM samples were analyzed with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). For all DOM molecules, three molecular groups with significantly different chemical properties were identified through Spearman correlation analysis between the relative intensities of DOM molecules and organic C concentrations in solutions after adsorptive fractionation. Three corresponding molecular models for the three molecular groups were constructed based on Vienna Soil-Organic-Matter Modeler and FT-ICR-MS results, which were used as base units to construct molecular models for the original or fractionated DOM samples (model(DOM)). The models well described the chemical properties of the original or fractionated DOM as compared with the experimental data. Furthermore, based on model(DOM), the proton and metal binding constants of DOM molecules were quantified by SPARC chemical reactivity calculations and linear free energy relationships. We found the density of binding sites of the fractionated DOM samples was negatively correlated with the adsorption percentage. Our modeling results suggested that adsorption of DOM on ferrihydrite gradually removed acidic functional groups from the solution, dominated by the adsorption of both carboxyl and phenol groups. This study proposed a new modeling approach to quantify the molecular fractionation processes of DOM on Fe oxides and their impact on proton and metal binding properties, which is expected to be applicable to DOM from different environments.

3.
Environ Sci Technol ; 57(1): 831-841, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36574384

RESUMO

Soil dissolved organic matter (DOM) is composed of a mass of complex organic compounds in soil solutions and significantly affects a range of (bio)geochemical processes in soil environment. However, how the chemical complexity (i.e., heterogeneity and chemodiversity) of soil DOM molecules affects their proton and metal binding ability remains unclear, which limits our ability for predicting the environmental behavior of DOM and metals. In this study, we developed a unified modeling approach for quantifying the proton and metal binding ability of soil DOM based on Cu titration experiments, Fourier transform ion cyclotron resonance mass spectrometry data, and molecular modeling method. Although soil DOM samples from different regions have enormously heterogeneous and diverse properties, we found that the molecules of soil DOM can be divided into three representative groups according to their Cu binding capacity. Based on the molecular models for individual molecular groups and the relative contributions of each group in each soil DOM, we were able to further develop molecular models for all soil DOM to predict their molecular properties and proton and metal binding ability. Our results will help to develop mechanistic models for predicting the reactivity of soil DOM from various sources.


Assuntos
Matéria Orgânica Dissolvida , Solo , Solo/química , Prótons , Metais , Espectrometria de Massas
4.
Sci Total Environ ; 843: 156996, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772564

RESUMO

Dissolved organic matter (DOM), a ubiquitous ligand for heavy metals, plays a crucial role in regulating the bioavailability and fate of heavy metals in the environment. However, owing to complex structure and heterogeneity of DOM, it is still challenging to develop kinetics models to predict the rates of heavy metal reactions with DOM. In this study, we investigated the kinetics of Cd, Ni, and Pb release from a typical fulvic acid (FA) under a wide range of experimental conditions using a competing ligand exchange (CLE) method. Among three metals, Cd showed the fastest release from FA while Ni and Pb had slower release rates. Reaction pH also had different impact on the release rates of the three metals, presumably attributed to different proton/metal exchange ratios for the metal ion complexation with FA. We formulated a kinetics model for Cd, Ni, and Pb release from FA by considering metal ions dissociation from FA, re-association of metal ions with FA, and metal ion uptake by the resin in the CLE experiments. The chemical speciation model WHAM 7 was used to predict the local equilibrium status that the kinetic reactions were away from, which help to derive the kinetic parameters based on the equilibrium parameters. For both Cd and Pb, model calculations were sensitive to the re-association rates, especially at high pH, while for Ni, the impact of the re-association rates was less significant. Based on the model parameters obtained in this study, our model simulations have also demonstrated that metal-FA complexes may undergo different rates of dissociation in the environment, affecting the dynamic speciation and transfer of metals to other biological processes. This work has provided a quantitative tool for predicting metal release from DOM, which would be useful for predicting the bioavailability and fate of heavy metals in the environment.


Assuntos
Cádmio , Metais Pesados , Benzopiranos , Cádmio/química , Cinética , Chumbo , Ligantes , Metais Pesados/química , Níquel/química
5.
Chemosphere ; 301: 134675, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35461894

RESUMO

Prediction on the release kinetics of metalloids from soils is challenging due to the physio-chemical heterogeneity of soil and the varying binding abilities of metalloid contaminants on soil. In this study, the kinetics of As(V), together with Cu(II), release from two typical field contaminated soils were investigated by the stirred-flow experiments. We formulated the quantitative models to describe the release kinetics of As(V) from the contaminated soils with consideration of varying soil particle size and presence of Cu(II). The results showed that the release kinetics of As(V) and Cu(II) from different particle size fractions and at different reaction pH was well described by the model. The models also indicated that the bidentate binding sites on goethite were the major contributor for As(V) release, while soil organic matter (SOM) mainly controlled the Cu(II) release. Finer particle size fractions had more significant contributions to As(V) and Cu(II) release due to higher concentrations of reactive metal(loid)s and more reactive adsorbents. Moreover, the models also showed applicability for predicting metal(loid) release from the bulk soils by considering the contribution of each soil particle size fraction, and the kinetic behaviors of two individual contaminants, As(V) and Cu(II), can be modeled independently. Our results provided a modeling framework to predict the release kinetics of metal(loid)s from soils co-contaminated with different cation and anion pollutants with consideration on the effects of physical and chemical heterogeneity of soils.


Assuntos
Metaloides , Poluentes do Solo , Cobre/química , Monitoramento Ambiental/métodos , Cinética , Metais , Tamanho da Partícula , Solo/química , Poluentes do Solo/análise
6.
Sci Total Environ ; 763: 142937, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33498124

RESUMO

The properties and composition of soil dissolved organic matter (DOM) are highly affected by the adsorption and desorption of organic matter (OM) on soil minerals and heterotrophic microbial respiration. Organic acids (e.g., oxalic acid), components of root exudates, have been revealed to liberate organic matter (OM) by the dissolution of protective mineral phases and stimulate microbial degradation of OM. However, the effects of organic acids on the properties and composition of soil DOM molecules and the related mechanisms are still poorly understood. In this study, we conducted microcosm incubation experiments with and without oxalic acid addition, and aimed to elucidate the variations of DOM properties and composition, employing a combination of Fourier transform ion cyclotron resonance mass spectrometry, optical spectroscopy, and bacterial community composition analysis. Our results indicated that the released OM from the direct dissolution of protective mineral phases by oxalic acid further stimulated the microbial reductive release of Fe mineral-associated OM under anoxic conditions. Furthermore, the addition of oxalic acid enhanced the degradation of aliphatic compounds and lignins with low O/C ratios, and increased the accumulation of lignins with high O/C ratios, tannins, and condensed aromatics. Linking the bacterial community composition to DOM molecular properties and composition further suggested that the enhanced reductive release of Fe mineral-associated OM was highly related to the increased abundances of Proteobacteria and Actinobacteria. Overall, oxalic acid induced long-lasting impacts on soil DOM properties and composition under anoxic soil conditions in our study. We expect that our results will contribute to understanding the dynamics of soil DOM molecules in the environment.


Assuntos
Ácido Oxálico , Solo , Adsorção , Minerais , Compostos Orgânicos
7.
Environ Sci Technol ; 54(10): 6174-6184, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32298089

RESUMO

Dissolved organic matter (DOM) plays a key role in many biogeochemical processes, but the drivers controlling the diversity of chemical composition and properties of DOM molecules (chemodiversity) in soils are poorly understood. It has also been debated whether environmental conditions or intrinsic molecular properties control the accumulation and persistence of DOM due to the complexity of both molecular composition of DOM and interactions between DOM and surrounding environments. In this study, soil DOM samples were extracted from 33 soils collected from different regions of China, and we investigated the effects of climate and soil properties on the chemodiversity of DOM across different regions of China, employing a combination of Fourier transform ion cyclotron resonance mass spectrometry, optical spectroscopy, and statistical analyses. Our results indicated that, despite the heterogeneity of soil samples and complex influencing factors, aridity and clay can account for the majority of the variations of DOM chemical composition. The finding implied that DOM chemodiversity is an ecosystem property closely related to the environment, and can be used in developing large-scale soil biogeochemistry models for predicting C cycling in soils.


Assuntos
Ecossistema , Solo , China , Espectrometria de Massas , Compostos Orgânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...